A325477 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of three indeterminates in terms of their elementary symmetric functions.
1, 1, -2, 1, -3, 3, 1, -4, 2, 4, 1, -5, 5, 5, -5, 1, 1, -6, 9, 6, -2, -12, 3, 1, -7, 14, 7, -7, -21, 7, 7, 1, -8, 20, 8, -16, -32, 2, 24, 12, -8, 1, -9, 27, 9, -30, -45, 9, 54, 18, -9, -27, 3, 1, -10, 35, 10, -50, -60, 25, 100, 25, -2, -40, -60, 15, 10
Offset: 1
Examples
The irregular triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... ------------------------------------------------------------- 1: 1 2: 1 -2 3: 1 -3 3 4: 1 -4 2 4 5: 1 -5 5 5 -5 6: 1 -6 9 6 -2 -12 3 7: 1 -7 14 7 -7 -21 7 7 8: 1 -8 20 8 -16 -32 2 24 12 -8 9: 1 -9 27 9 -30 -45 9 54 18 -9 -27 3 10: 1 -10 35 10 -50 -60 25 100 25 -2 -40 -60 15 10 ... n = 4: x1^4 + x2^4 + x3^4 = (e_1)^4 - 4*(e_1)^2*e_2 + 2*(e_2)^2 + 4*e_1*e_3, with e_1 = x1 + x2 + x3, e_2 = x1*x2 + x1*x3 + x2*x^3 and e_3 = x1*x2*x3.
Links
- Wolfdieter Lang, On sums of powers of zeros of polynomials, J. Comp. Appl. Math. 89 (1998) 237-256.
Formula
T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 3.
Comments