A115131 Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).
1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
Offset: 1
Examples
First few rows of triangle T(n,k) are as follows (see the link for rows 1..10): 1; -2, 1; 3, -3, 1; -4, 4, 2, -4, 1; 5, -5, -5, 5, 5, -5, 1; ... n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4. (For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
References
- P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972; see pp. 831-832. [alternative scanned copy].
- Wolfdieter Lang, On sums of powers of zeros of polynomials, J. Comp. Appl. Math. 89 (1998) 237-256; see Theorem 1.
- Wolfdieter Lang, First 10 rows of the array.
- R. Lidl, Tschebyscheffpolynome in mehreren Variablen, J. reine u. angew. Math. 273 (1975), 178-198.
- R. Lidl, Tschebyscheffpolynome in mehreren Variablen, J. reine u. angew. Math. 273 (1975), 178-198.
- R. Lidl and Ch. Wells, Chebyshev polynomials in several variables, J. reine u. angew. Math. 255 (1972), 104-111.
- R. Lidl and Ch. Wells, Chebyshev polynomials in several variables, J. reine u. angew. Math. 255 (1972), 104-111.
- P. A. MacMahon, Combinatory analysis (2 vols.), Chelsea, NY, 1960; see p. 5 (with a_k -> sigma_k).
Crossrefs
Formula
T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.
Extensions
Various sections edited by Petros Hadjicostas, Dec 14 2019
Comments