cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A115131 Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Examples

			First few rows of triangle T(n,k) are as follows (see the link for rows 1..10):
   1;
  -2,  1;
   3, -3,  1;
  -4,  4,  2, -4, 1;
   5, -5, -5,  5, 5, -5, 1;
  ...
n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4.
  (For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
		

References

  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).

Crossrefs

Cf. A210258 (in another ordering of partitions), A132460 (N=2), A325477 (N=3),
A324602 (N=4).

Formula

T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 14 2019

A306603 a(n) = (2 cos(Pi/15))^n + (2 cos(7 Pi/15))^n + (2 cos(11 Pi/15))^n + (2 cos(13 Pi/15))^n.

Original entry on oeis.org

4, -1, 9, -1, 29, 4, 99, 34, 349, 179, 1254, 824, 4559, 3574, 16704, 15004, 61549, 61709, 227799, 250229, 846254, 1004149, 3153984, 3997399, 11788879, 15812504, 44178624, 62229509, 165946124, 243873904, 624650004, 952400599, 2355748909, 3708579599
Offset: 0

Views

Author

Greg Dresden, Feb 27 2019

Keywords

Comments

a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = -1, e_2 = -4, e_3 = -4 and e_4 = 1. The arguments are e_j(x_1, x_2, x_3, x_4), for j = 1..4, with the zeros {x_i}A187360,%20for%20n%20=%2015),%20appearing%20to%20the%20power%20n%20in%20the%20formula%20given%20above.%20-%20_Wolfdieter%20Lang">{i=1..4} of the minimal polynomial of 2*cos(Pi/15) (see A187360, for n = 15), appearing to the power n in the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A324602.

Programs

  • Mathematica
    Table[Sum[(2.0 Cos[k Pi/15])^n, {k, {1, 7, 11, 13}}] // Round, {n, 1, 30}]
    LinearRecurrence[{-1,4,4,-1},{4,-1,9,-1},40] (* Harvey P. Dale, Jun 02 2024 *)

Formula

G.f.: (4*x^3+8*x^2-3*x-4)/(-x^4+4*x^3+4*x^2-x-1). - Alois P. Heinz, Feb 27 2019
a(n) = -a(n-1) + 4*a(n-2) + 4*a(n-3) -a(n-4). - Greg Dresden, Feb 27 2019

A325477 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of three indeterminates in terms of their elementary symmetric functions.

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 2, 4, 1, -5, 5, 5, -5, 1, 1, -6, 9, 6, -2, -12, 3, 1, -7, 14, 7, -7, -21, 7, 7, 1, -8, 20, 8, -16, -32, 2, 24, 12, -8, 1, -9, 27, 9, -30, -45, 9, 54, 18, -9, -27, 3, 1, -10, 35, 10, -50, -60, 25, 100, 25, -2, -40, -60, 15, 10
Offset: 1

Views

Author

Wolfdieter Lang, May 03 2019

Keywords

Comments

The length of row n is A001399(n), n >= 1.
The Girard-Waring formula for the power sum p(3,n) = x1^n + x2^2 + x3^n in terms of the elementary symmetric functions e_j(x1, x2, x3), for j=1, 2, 3, is given by Sum_{i=0..floor(n/3)} Sum_{j=0...floor((n-3*i)/2)} ((-1)^j)*n*(n - j - 2*i - 1)!/(i!*j!*(n - 2*j -3*i)!)*e_1^(n-3*i-2*j)*(e_2)^j*(e_3)^i, n >= 1 (the arguments of e_j have been omitted). See the W. Lang reference, Theorem 1, case N = 3, with r -> n.
This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions which have a part larger than 3 elininated. See row n of the array of Waring numbers A115131 read backwards, with these partitions omitted, and numerated with k from 1, 2, ..., A001399(n).

Examples

			The irregular triangle T(n, k) begins:
n\k  1   2  3   4   5   6  7   8   9  10  11  12  13  14 ...
-------------------------------------------------------------
1:   1
2:   1  -2
3:   1  -3  3
4:   1  -4  2   4
5:   1  -5  5   5  -5
6:   1  -6  9   6  -2 -12  3
7:   1  -7 14   7  -7 -21  7   7
8:   1  -8 20   8 -16 -32  2  24  12  -8
9:   1  -9 27   9 -30 -45  9  54  18  -9 -27   3
10:  1 -10 35  10 -50 -60 25 100  25  -2 -40 -60  15  10
...
n = 4: x1^4 + x2^4 + x3^4 = (e_1)^4 - 4*(e_1)^2*e_2 + 2*(e_2)^2 + 4*e_1*e_3, with e_1 = x1 + x2 + x3, e_2 = x1*x2 + x1*x3 + x2*x^3 and e_3 = x1*x2*x3.
		

Crossrefs

Cf. A001399, A115131, A132460 (case N=2), A324602 (N=4).

Formula

T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 3.

A306610 a(n) = (2*cos(Pi/15))^(-n) + (2*cos(7*Pi/15))^(-n) + (2*cos(11*Pi/15))^(-n) + (2*cos(13*Pi/15))^(-n), for n >= 1.

Original entry on oeis.org

4, 24, 109, 524, 2504, 11979, 57299, 274084, 1311049, 6271254, 29997829, 143491199, 686373809, 3283190949, 15704770004, 75121978804, 359337430474, 1718849676159, 8221921677724, 39328626006254, 188124003629279, 899869747188249, 4304424455586134
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

-a(n) is the coefficient of x in the minimal polynomial for (2*cos(Pi/15))^n, for n >= 1. The coefficients of -x^3 are A306603(n), and those of x^2 are A306611(n).
a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = 4, e_2 = -4, e_3 = -1 and e_4 = 1. The arguments are e_j(1/x_1, 1/x_2, 1/x_3, 1/x_4), for j = 1..4, with the zeros {x_i}{i=1..4} of the minimal polynomial of 2*cos(Pi/15), appearing under the negative powers of the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A306603 (positive powers of these cosines), A306611, A324602.

Programs

  • Mathematica
    Table[Round[N[Sum[(2 Cos[k Pi/15])^(-n), {k,{1,7,11,13}}],50]],{n,1,30}]

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3) - a(n-4).
G.f.: x*(-4x^3 -3x^2 +8x +4)/(x^4 +x^3 -4x^2 -4x +1).
a(n) = round((2*cos(7*Pi/15))^(-n)) for n >= 3.

A307449 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of five indeterminates in terms of their elementary symmetric functions (reverse Abramowitz-Stegun order of partitions).

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 2, 4, -4, 1, -5, 5, 5, -5, -5, 5, 1, -6, 9, 6, -2, -12, -6, 3, 6, 6, 1, -7, 14, 7, -7, -21, -7, 7, 7, 14, 7, -7, -7, 1, -8, 20, 8, -16, -32, -8, 2, 24, 12, 24, 8, -8, -8, -16, -16, 4, 8, 1, -9, 27, 9, -30, -45, -9, 9, 54, 18, 36, 9, -9, -27, -27, -27, -27, 3, 18, 9, 9, 18, -9, 1, -10, 35, 10, -50, -60, -10, 25, 100, 25, 50, 10, -2, -40, -60, -60, -40, -40, 15, 10, 10, 60, 30, 15, 30, -10, -10, -20, -20, 5
Offset: 1

Views

Author

Wolfdieter Lang, May 14 2019

Keywords

Comments

The length of row n is A001401(n), n >= 1.
The Girard-Waring formula for the power sum p(5,n) = Sum_{j=1..5} (x_j)^n in terms of the elementary symmetric functions e_j(x_1, x_2, x_3, x_4), for j = 1, 2 ,..., 5 is given in the W. Lang reference, Theorem 1, in an explicitly nested four sums version. See also the summary link, for N = 5 (there sigma_j^{(N)} -> e_j here).
In this array the partitions of n, with all partitions with a part >= 6 omitted, are used. Here the partitions appear in the reverse Abramowitz-Stegun order. See row n of the array of Waring numbers A115131, read backwards, with the entries corresponding to these omitted partitions.

Examples

			The irregular triangle T(n, k) begins:
n\k 1   2  3  4   5   6  7 8  9 10 11 12 13  14  15  16  17 18 19 20 21 22 23
-----------------------------------------------------------------------------
1:  1
2:  1  -2
3:  1  -3  3
4:  1  -4  2  4  -4
5:  1  -5  5  5  -5  -5  5
6:  1  -6  9  6  -2 -12 -6 3  6  6
7:  1  -7 14  7  -7 -21 -7 7  7 14  7 -7 -7
8:  1  -8 20  8 -16 -32 -8 2 24 12 24  8 -8  -8 -16 -16   4  8
9:  1  -9 27  9 -30 -45 -9 9 54 18 36  9 -9 -27 -27 -27 -27  3 18  9  9 18 -9
.
.
.
n = 10: 1 -10 35 10 -50 -60 -10 25 100 25 50 10 -2 -40 -60 -60 -40 -40 15 10 10 60 30 15 30 -10 -10 -20 -20 5.
...
------------------------------------------------------------------------------
Row n = 6: x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_5^6 =  1*e_1^6  - 6*e_1^4*e_2 + 9*e_1^2*e_2^2 + 6*e_1^3*e_3 - 2*e_2^3 - 12*e_1*e_2*e_3 - 6*e_1^2*e_4 + 3*e_3^2 + 6*e_2*e_4 + 6*e_1*e_5,  with e_1 = Sum_{j=1..5} x_j, e_2 = x1*(x_2 + x_3 + x_4 + x_5) + x_2*(x_3 + x_4 + x_5) + x_3*(x_4 + x_5) + x_4*x_5, e_3 = x_1*x_2*x_3 + x_1*x_2*x_4 +  x_1*x_2*x_5 +  x_2*x_3*x_4 + x_2*x_3*x_5 + x_2*x_4*x_5 + x_3*x_4*x_5, e_4 =  x_1*x_2*x_3*x_4 + x_1*x_2*x_3*x_5 + x_1*x_2*x_4*x_5 + x_1*x_3*x_4*x_5 + x_2*x_3*x_4*x_5, e_5 = Product_{i=1..5} x_j.
		

Crossrefs

Cf. A001401, A115131, A132460 (N=2), A325477 (N=3), A324602 (N=4).

Formula

T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 6.
Showing 1-5 of 5 results.