cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306610 a(n) = (2*cos(Pi/15))^(-n) + (2*cos(7*Pi/15))^(-n) + (2*cos(11*Pi/15))^(-n) + (2*cos(13*Pi/15))^(-n), for n >= 1.

Original entry on oeis.org

4, 24, 109, 524, 2504, 11979, 57299, 274084, 1311049, 6271254, 29997829, 143491199, 686373809, 3283190949, 15704770004, 75121978804, 359337430474, 1718849676159, 8221921677724, 39328626006254, 188124003629279, 899869747188249, 4304424455586134
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

-a(n) is the coefficient of x in the minimal polynomial for (2*cos(Pi/15))^n, for n >= 1. The coefficients of -x^3 are A306603(n), and those of x^2 are A306611(n).
a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = 4, e_2 = -4, e_3 = -1 and e_4 = 1. The arguments are e_j(1/x_1, 1/x_2, 1/x_3, 1/x_4), for j = 1..4, with the zeros {x_i}{i=1..4} of the minimal polynomial of 2*cos(Pi/15), appearing under the negative powers of the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A306603 (positive powers of these cosines), A306611, A324602.

Programs

  • Mathematica
    Table[Round[N[Sum[(2 Cos[k Pi/15])^(-n), {k,{1,7,11,13}}],50]],{n,1,30}]

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3) - a(n-4).
G.f.: x*(-4x^3 -3x^2 +8x +4)/(x^4 +x^3 -4x^2 -4x +1).
a(n) = round((2*cos(7*Pi/15))^(-n)) for n >= 3.

A306611 The middle coefficient in the minimal polynomial for (2*cos(Pi/15))^n.

Original entry on oeis.org

-4, 26, -49, 246, -619, 2621, -7774, 30126, -97879, 363131, -1237504, 4497801, -15702574, 56538746, -199764994, 716265246, -2545683874, 9110943101, -32474838004, 116135818131, -414537600379, 1481979727826, -5293483738474, 18921861083121, -67610126265619, 241664630238746
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

From Wolfdieter Lang, May 01 2019: (Start)
rho(15) = 2*cos(Pi/15) = 2*A019887 gives the length ratio of the smallest diagonal and the side of a regular 15-gon. The minimal polynomial of rho(15) is C(n, x) = x^4 + x^3 - 4*x^2 - 4*x + 1, with zeros x_0 = rho(15), x_1 = 2*cos(7*Pi/15), x_2 = 2*cos(11*Pi/15) and x_3 = 2*cos(13*Pi/15). See A187360, also for a W. Lang link.
The minimal polynomial of rho(1)^n, for n >= 1, considered here, is C(15,n,x) = Product_{j=0..3} (x - x_j^n) = x^4 - A_1(n)x^3 + A_2(n)*x^2 - A_3(n)*x + A_4(n). The coefficients are the elementary symmetric functions A_j(n) = sigma_j((x_0)^n, (x_1)^n, (x_2)^n, (x_3)^n), for j = 1, 2, 3, and A_4(n) = (A_4(1))^n = 1. A_1(n) = A306603(n), A_2(n) = a(n), and A_3(n) = A306610(n), for n >= 1.
Thanks to Greg Dresden for sending me a proof that C(15,n,x) has integer coefficients and does not factor over the rationals for n >= 1. (End)

Crossrefs

Cf. A306603 (which gives the negative coefficient of x^3 in minimal polynomial for (2 cos(Pi/15))^n) and A306610 (likewise for the coefficient of x).
Cf. A019887 (cos(Pi/15)), A187360.

Programs

  • Mathematica
    Table[Coefficient[MinimalPolynomial[(2Cos[Pi/15])^n,x],x,2],{n,1,40}]
  • PARI
    Vec(-x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Feb 28 2019

Formula

a(n) = -4*a(n-1) + 5*a(n-2) + 25*a(n-3) + 5*a(n-4) - 4*a(n-5) - a(n-6).
G.f.: -x*(4 - 10*x - 75*x^2 - 20*x^3 + 20*x^4 + 6*x^5) / ((1 + 3*x + x^2)*(1 + x - 9*x^2 + x^3 + x^4)). - Colin Barker, Feb 28 2019

A307886 Array of coefficients of the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 (ascending powers).

Original entry on oeis.org

1, -4, -4, 1, 1, 1, -24, 26, -9, 1, 1, -109, -49, 1, 1, 1, -524, 246, -29, 1, 1, -2504, -619, -4, 1, 1, -11979, 2621, -99, 1, 1, -57299, -7774, -34, 1, 1, -274084, 30126, -349, 1, 1, -1311049, -97879, -179, 1, 1, -6271254, 363131, -1254, 1, 1, -29997829, -1237504, -824, 1
Offset: 1

Views

Author

Greg Dresden and Wolfdieter Lang, May 02 2019

Keywords

Comments

The length of each row is 5.
The minimal polynomial of (2*cos(Pi/15))^n, for n >= 1, is C(15, n, x) = Product_{j=0..3} (x - (x_j)^n) = Sum_{k=0} T(n, k) x^k, where x_0 = 2*cos(Pi/15), x_1 = 2*cos(7*Pi/15), x_2 = 2*cos(11*Pi/15), and x_3 = 2*cos(13*Pi/15) are the zeros of C(15, 1, x) with coefficients given in A187360 (row n=15).

Examples

			The rectangular array T(n, k) begins:
n\k 0      1      2      3      4
---------------------------------
1:  1     -4     -4      1      1
2:  1    -24     26     -9      1
3:  1   -109    -49      1      1
4:  1   -524    246    -29      1
5:  1  -2504   -619     -4      1
6:  1 -11979   2621    -99      1
7:  1 -57299  -7774    -34      1
...
		

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A306603, A306610, A306611.

Programs

  • Mathematica
    Flatten[Table[CoefficientList[MinimalPolynomial[(2*Cos[\[Pi]/15])^n, x], x], {n, 1, 15}]]

Formula

T(n,k) = the coefficient of x^k in C(15, n, x), n >= 1, k=0,1,2,3,4, with C(15, n, k) the minimal polynomial of (2*cos(Pi/15))^n, for n >= 1 as defined above.
T(n, 0) = T(n, 4) = 1. T(n, 1) = -A306610(n), T(n, 2) = A306611(n), T(n, 3) = -A306603(n), n >= 1.
Showing 1-3 of 3 results.