A325478 Number of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and all colors of an initial interval of the color palette are used.
1, 1, 4, 29, 329, 5252, 110955, 2972769, 97922354, 3872594811, 180459028989, 9759149087646, 604841170643957, 42508077480226893, 3357224252026104140, 295651782273190911233, 28834727303442640011901, 3095877335697619795977036, 363977673792652615285223095
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..296
Crossrefs
Row sums of A322670.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) end: a:= n-> add(add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n): seq(a(n), n=0..23);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]]; a[n_] := Sum[Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}]; a /@ Range[0, 23] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)