A325482 Number of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly two colors are used.
3, 12, 41, 140, 497, 1848, 7191, 29184, 123107, 538076, 2430353, 11317644, 54229905, 266906856, 1347262319, 6965034368, 36833528195, 199037675052, 1097912385849, 6176578272780, 35409316648433, 206703355298072, 1227820993510151, 7416522514174080
Offset: 2
Keywords
Examples
a(3) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..792
Crossrefs
Column k=2 of A322670.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)* binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n))) end: a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..27);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]]; a[n_] := With[{k = 2}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[2, 27] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
E.g.f.: 1-2*exp(x)+exp(x*(x+4)/2).
a(n) ~ n^(n/2) * exp(-1 + 2*sqrt(n) - n/2) / sqrt(2). - Vaclav Kotesovec, Sep 18 2019