cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325482 Number of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly two colors are used.

Original entry on oeis.org

3, 12, 41, 140, 497, 1848, 7191, 29184, 123107, 538076, 2430353, 11317644, 54229905, 266906856, 1347262319, 6965034368, 36833528195, 199037675052, 1097912385849, 6176578272780, 35409316648433, 206703355298072, 1227820993510151, 7416522514174080
Offset: 2

Views

Author

Alois P. Heinz, Sep 06 2019

Keywords

Examples

			a(3) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
		

Crossrefs

Column k=2 of A322670.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*
          binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n)))
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..27);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[n - 1, j - 1] Binomial[k, j], {j, 1, Min[k, n]}]];
    a[n_] := With[{k = 2}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
    a /@ Range[2, 27] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

E.g.f.: 1-2*exp(x)+exp(x*(x+4)/2).
a(n) ~ n^(n/2) * exp(-1 + 2*sqrt(n) - n/2) / sqrt(2). - Vaclav Kotesovec, Sep 18 2019