A325502 Heinz number of row n of Pascal's triangle A007318.
2, 4, 12, 100, 2548, 407044, 106023164, 136765353124, 399090759725236, 4445098474836287524, 151287513513627682258436, 12698799587219706700017036196, 3463928752077516667634331415766516, 2591202267595530693505786197581910681796
Offset: 0
Examples
Row n = 5 of Pascal's triangle is (1,5,10,10,5,1), with Heinz number prime(1)*prime(5)*prime(10)*prime(10)*prime(5)*prime(1) = 407044, so a(5) = 407044. The sequence of terms together with their prime indices begins: 2: {1} 4: {1,1} 12: {1,1,2} 100: {1,1,3,3} 2548: {1,1,4,4,6} 407044: {1,1,5,5,10,10} 106023164: {1,1,6,6,15,15,20} 136765353124: {1,1,7,7,21,21,35,35} 399090759725236: {1,1,8,8,28,28,56,56,70} 4445098474836287524: {1,1,9,9,36,36,84,84,126,126}
Crossrefs
Programs
-
Mathematica
Times@@@Table[Prime[Binomial[n,k]],{n,0,5},{k,0,n}]
Comments