cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325502 Heinz number of row n of Pascal's triangle A007318.

Original entry on oeis.org

2, 4, 12, 100, 2548, 407044, 106023164, 136765353124, 399090759725236, 4445098474836287524, 151287513513627682258436, 12698799587219706700017036196, 3463928752077516667634331415766516, 2591202267595530693505786197581910681796
Offset: 0

Views

Author

Gus Wiseman, May 06 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Every odd-indexed term is a square of a squarefree number.

Examples

			Row n = 5 of Pascal's triangle is (1,5,10,10,5,1), with Heinz number prime(1)*prime(5)*prime(10)*prime(10)*prime(5)*prime(1) = 407044, so a(5) = 407044.
The sequence of terms together with their prime indices begins:
                    2: {1}
                    4: {1,1}
                   12: {1,1,2}
                  100: {1,1,3,3}
                 2548: {1,1,4,4,6}
               407044: {1,1,5,5,10,10}
            106023164: {1,1,6,6,15,15,20}
         136765353124: {1,1,7,7,21,21,35,35}
      399090759725236: {1,1,8,8,28,28,56,56,70}
  4445098474836287524: {1,1,9,9,36,36,84,84,126,126}
		

Crossrefs

Programs

  • Mathematica
    Times@@@Table[Prime[Binomial[n,k]],{n,0,5},{k,0,n}]

Formula

A061395(a(n)) = A001405(n).
A056239(a(n)) = A000079(n).
A181819(a(n)) = A038754(n + 1).

A325514 Heinz number of row n of the triangle of partition numbers A008284.

Original entry on oeis.org

2, 2, 4, 8, 24, 72, 600, 4200, 101640, 2042040, 107869080, 6435365640, 644779672680, 62219208188280, 14408598135902520, 3195700205016233640, 1246437353286578234760, 527744165981695537415640, 417665868515500206974318760, 314096677106179199154141208440
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
             2: {1}
             2: {1}
             4: {1,1}
             8: {1,1,1}
            24: {1,1,1,2}
            72: {1,1,1,2,2}
           600: {1,1,1,2,3,3}
          4200: {1,1,1,2,3,3,4}
        101640: {1,1,1,2,3,4,5,5}
       2042040: {1,1,1,2,3,4,5,6,7}
     107869080: {1,1,1,2,3,5,5,7,8,9}
    6435365640: {1,1,1,2,3,5,5,7,10,10,11}
  644779672680: {1,1,1,2,3,5,6,7,11,12,13,15}
		

Crossrefs

Programs

  • Mathematica
    Times@@@Table[If[n>0&&k==0,1,Prime[Length[IntegerPartitions[n,{k}]]]],{n,0,20},{k,0,n}]

Formula

A001221(a(n)) = A325512(n).
A061395(a(n)) = A002569(n).
A056239(a(n)) = A000041(n).
Showing 1-2 of 2 results.