cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325504 Product of products of parts over all strict integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Examples

			The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120.
The sequence of terms together with their prime indices begins:
              1: {}
              1: {}
              2: {1}
              6: {1,2}
             12: {1,1,2}
            120: {1,1,1,2,3}
           1440: {1,1,1,1,1,2,2,3}
          40320: {1,1,1,1,1,1,1,2,2,3,4}
        1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4}
     1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4}
  2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
		

Crossrefs

Cf. A000009, A006128, A007870 (non-strict version), A015723, A022629 (sum of products of parts), A066186, A066189, A066633, A246867, A325505, A325506, A325512, A325513, A325515.

Programs

  • Maple
    a:= n-> mul(i, i=map(x-> x[], select(x->
            nops(x)=nops({x[]}), combinat[partition](n)))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)->
         [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[Times@@Join@@Select[IntegerPartitions[n],UnsameQ@@#&],{n,0,10}]

Formula

A001222(a(n)) = A325515(n).
a(n) = A003963(A325506(n)).