A325504 Product of products of parts over all strict integer partitions of n.
1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
Offset: 0
Keywords
Examples
The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120. The sequence of terms together with their prime indices begins: 1: {} 1: {} 2: {1} 6: {1,2} 12: {1,1,2} 120: {1,1,1,2,3} 1440: {1,1,1,1,1,2,2,3} 40320: {1,1,1,1,1,1,1,2,2,3,4} 1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4} 1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4} 2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
Crossrefs
Programs
-
Maple
a:= n-> mul(i, i=map(x-> x[], select(x-> nops(x)=nops({x[]}), combinat[partition](n)))): seq(a(n), n=0..15); # Alois P. Heinz, Aug 03 2021 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)-> [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..15); # Alois P. Heinz, Aug 03 2021
-
Mathematica
Table[Times@@Join@@Select[IntegerPartitions[n],UnsameQ@@#&],{n,0,10}]