A325544 Number of nodes in the rooted tree with Matula-Goebel number n!.
1, 1, 2, 4, 6, 9, 12, 15, 18, 22, 26, 30, 34, 38, 42, 47, 51, 55, 60, 64, 69, 74, 79, 84, 89, 95, 100, 106, 111, 116, 122, 127, 132, 138, 143, 149, 155, 160, 165, 171, 177, 182, 188, 193, 199, 206, 212, 218, 224, 230, 237, 243, 249, 254, 261, 268, 274, 280
Offset: 0
Keywords
Examples
Matula-Goebel trees of the first 9 factorial number are: 0!: o 1!: o 2!: (o) 3!: (o(o)) 4!: (ooo(o)) 5!: (ooo(o)((o))) 6!: (oooo(o)(o)((o))) 7!: (oooo(o)(o)((o))(oo)) 8!: (ooooooo(o)(o)((o))(oo)) The number of nodes is the number of o's plus the number of brackets, giving {1,1,2,4,6,9,12,15,18}, as required.
Crossrefs
Programs
-
Mathematica
mgwt[n_]:=If[n==1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>mgwt[PrimePi[p]]*k]]]; Table[mgwt[n!],{n,0,100}]
Formula
For n > 1, a(n) = 1 - n + Sum_{k = 1..n} A061775(k).
Comments