cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325547 Number of compositions of n with strictly increasing differences.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 18, 24, 30, 45, 57, 71, 96, 120, 148, 192, 235, 286, 354, 431, 518, 628, 752, 893, 1063, 1262, 1482, 1744, 2046, 2386, 2775, 3231, 3733, 4305, 4977, 5715, 6536, 7507, 8559, 9735, 11112, 12608, 14252, 16177, 18265, 20553, 23204, 26090, 29223
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 11 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)
       (11)  (12)  (13)   (14)   (15)
             (21)  (22)   (23)   (24)
                   (31)   (32)   (33)
                   (112)  (41)   (42)
                   (211)  (113)  (51)
                          (212)  (114)
                          (311)  (213)
                                 (312)
                                 (411)
                                 (2112)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A179269 (breakdown by width)
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, v[i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i*(1 + x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 27 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 27 2019