A325547 Number of compositions of n with strictly increasing differences.
1, 1, 2, 3, 6, 8, 11, 18, 24, 30, 45, 57, 71, 96, 120, 148, 192, 235, 286, 354, 431, 518, 628, 752, 893, 1063, 1262, 1482, 1744, 2046, 2386, 2775, 3231, 3733, 4305, 4977, 5715, 6536, 7507, 8559, 9735, 11112, 12608, 14252, 16177, 18265, 20553, 23204, 26090, 29223
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 11 compositions: (1) (2) (3) (4) (5) (6) (11) (12) (13) (14) (15) (21) (22) (23) (24) (31) (32) (33) (112) (41) (42) (211) (113) (51) (212) (114) (311) (213) (312) (411) (2112)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Differences[#]&]],{n,0,15}]
-
PARI
\\ Row sums of R(n) give A179269 (breakdown by width) R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, v[i-k*t]))); Mat(L)} seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w]))); x^i*(1 + x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 27 2019
Extensions
a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 27 2019
Comments