cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325559 Numbers n such that for any divisor d of n, and some integer k, A048720(d,k) = n only for trivial cases d=1 and d=n.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229, 233
Offset: 1

Views

Author

Antti Karttunen, May 11 2019

Keywords

Comments

These are numbers n such that there are only two divisor pairs (d, n/d) [namely, the trivial pairs (1, n) and (n, 1)] that satisfy the condition that when their binary expansions are converted to (0,1)-polynomials (e.g., 13=1101[2] encodes X^3 + X^2 + 1), then their product is the (0,1)-polynomial similarly converted from n, when the multiplication is done over field GF(2).
Differs from A206074 for the first time at n=173, where a(173) = 555, a value missing from A206074, while the first three terms of A206074 not present in this sequence are k = 689, 781 and 913, for all of which A325560(k) = 3, not 2.

Crossrefs

Positions of 2's in A325560, positions of 1's in A325563 (after the initial 1), fixed points of A325643 (after the initial 1).
Some subsequences: A257688 (after its initial 1), A325386 (the remaining terms).

Programs

  • PARI
    A325560(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sumdiv(n,d,my(q = Pol(binary(d))*Mod(1, 2)); !(p%q)); };
    isA325559(n) = (2 == A325560(n));