A325560 a(n) is the number of divisors d of n such that A048720(d,k) = n for some k.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 3, 4, 2, 8, 2, 4, 4, 6, 2, 8, 2, 6, 3, 4, 3, 9, 2, 4, 3, 8, 2, 6, 2, 6, 6, 4, 2, 10, 3, 4, 4, 6, 2, 8, 2, 8, 3, 4, 2, 12, 2, 4, 6, 7, 3, 6, 2, 6, 2, 6, 2, 12, 2, 4, 5, 6, 2, 6, 2, 10, 2, 4, 2, 9, 4, 4, 2, 8, 2, 12, 2, 6, 3, 4, 4, 12, 2, 6, 4, 6, 2, 8, 2, 8, 5
Offset: 1
Keywords
Examples
39 = 3*13 has four divisors 1, 3, 13, 39, of which all other divisors except 13 are counted because we have A048720(1,39) = A048720(39,1) = A048720(3,29) = 39, but A048720(13,u) is not equal to 39 for any u, thus a(39) = 3. See also the example in A325563.
Links
Programs
-
PARI
A325560(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sumdiv(n,d,my(q = Pol(binary(d))*Mod(1, 2)); !(p%q)); };
Comments