cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325580 G.f.: A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n, where A(0) = 0, as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 7, 3, 1, 16, 24, 15, 4, 1, 57, 98, 67, 26, 5, 1, 231, 430, 336, 144, 40, 6, 1, 1023, 2062, 1767, 861, 265, 57, 7, 1, 4926, 10610, 9873, 5300, 1845, 440, 77, 8, 1, 25483, 58240, 58221, 33974, 13041, 3501, 679, 100, 9, 1, 140601, 338984, 360930, 226716, 94580, 27978, 6083, 992, 126, 10, 1, 822422, 2081189, 2345469, 1572134, 706225, 226843, 54271, 9886, 1389, 155, 11, 1, 5074015, 13423258, 15926115, 11318196, 5428820, 1876728, 486941, 97448, 15246, 1880, 187, 12, 1
Offset: 0

Views

Author

Paul D. Hanna, May 11 2019

Keywords

Examples

			G.f. A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k begins:
A(x,y) = 1 + (y + 1)*x + (y^2 + 2*y + 2)*x^2 + (y^3 + 3*y^2 + 7*y + 5)*x^3 + (y^4 + 4*y^3 + 15*y^2 + 24*y + 16)*x^4 + (y^5 + 5*y^4 + 26*y^3 + 67*y^2 + 98*y + 57)*x^5 + (y^6 + 6*y^5 + 40*y^4 + 144*y^3 + 336*y^2 + 430*y + 231)*x^6 + (y^7 + 7*y^6 + 57*y^5 + 265*y^4 + 861*y^3 + 1767*y^2 + 2062*y + 1023)*x^7 + (y^8 + 8*y^7 + 77*y^6 + 440*y^5 + 1845*y^4 + 5300*y^3 + 9873*y^2 + 10610*y + 4926)*x^8 + (y^9 + 9*y^8 + 100*y^7 + 679*y^6 + 3501*y^5 + 13041*y^4 + 33974*y^3 + 58221*y^2 + 58240*y + 25483)*x^9 + (y^10 + 10*y^9 + 126*y^8 + 992*y^7 + 6083*y^6 + 27978*y^5 + 94580*y^4 + 226716*y^3 + 360930*y^2 + 338984*y + 140601)*x^10 + ...
where, by definition,
A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
1;
1, 1;
2, 2, 1;
5, 7, 3, 1;
16, 24, 15, 4, 1;
57, 98, 67, 26, 5, 1;
231, 430, 336, 144, 40, 6, 1;
1023, 2062, 1767, 861, 265, 57, 7, 1;
4926, 10610, 9873, 5300, 1845, 440, 77, 8, 1;
25483, 58240, 58221, 33974, 13041, 3501, 679, 100, 9, 1;
140601, 338984, 360930, 226716, 94580, 27978, 6083, 992, 126, 10, 1;
822422, 2081189, 2345469, 1572134, 706225, 226843, 54271, 9886, 1389, 155, 11, 1;
5074015, 13423258, 15926115, 11318196, 5428820, 1876728, 486941, 97448, 15246, 1880, 187, 12, 1; ...
the leftmost column in which yields A121689:
[1, 1, 2, 5, 16, 57, 231, 1023, 4926, 25483, 140601, ..., A121689, ...]
and has g.f.: Sum_{n>=0} x^n * (1+x)^(n^2).
Column 1 equals
[1, 2, 7, 24, 98, 430, 2062, 10610, 58240, 338984, ..., A325581(n), ...]
and has g.f.: Sum_{n>=0} (n+1) * x^n * (1+x)^(n*(n+1)).
Column 2 equals
[1, 3, 15, 67, 336, 1767, 9873, 58221, 360930, ..., A325586(n), ...]
and has g.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1+x)^(n*(n+2)).
The row sums of this triangle begin
[1, 2, 5, 16, 60, 254, 1188, 6043, 33080, 193249, ..., A301306(n), ...]
and has g.f.: Sum_{n>=0} (1 + (1+x)^n)^n * x^n.
		

Crossrefs

Cf. A121689 (column 0), A301306 (row sums), A325581 (column 1), A325586 (column 2), A325587 (column 3).

Programs

  • PARI
    {T(n,k) = my(Axy = sum(m=0,n, x^m * ((1+x +x*O(x^n))^m + y)^m ) );
    polcoeff( polcoeff( Axy,n,x),k,y)}
    for(n=0,12,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*x^n*y^k equals the following.
(1) A(x,y) = Sum_{n>=0} x^n * ((1+x)^n + y)^n.
(2) A(x,y) = Sum_{n>=0} x^n * (1+x)^(n^2) / (1 - x*y*(1+x)^n)^(n+1).
(3) A(x,y) = Sum_{k>=0} y^k * Sum_{n>=0} binomial(n+k,n) * (x*(1+x)^n)^(n+k).
G.f. of column k: Sum_{n>=0} binomial(n+k,n) * x^n * (1+x)^(n*(n+k)).

A325586 G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1+x)^(n*(n+2)).

Original entry on oeis.org

1, 3, 15, 67, 336, 1767, 9873, 58221, 360930, 2345469, 15926115, 112702725, 829218143, 6329731749, 50032666719, 408810685879, 3447546750090, 29963861568735, 268051909321565, 2465213070499965, 23282355990573738, 225577403162464915, 2240023319131286013, 22778185448591006709, 236997065442660095669, 2521130509681288754841, 27401150807636634911205, 304071227823781106763523, 3443058535424619400592874
Offset: 0

Views

Author

Paul D. Hanna, May 11 2019

Keywords

Comments

Equals column 2 of triangle A325580.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 67*x^3 + 336*x^4 + 1767*x^5 + 9873*x^6 + 58221*x^7 + 360930*x^8 + 2345469*x^9 + 15926115*x^10 + 112702725*x^11 + ...
such that
A(x) = 1 + 3*x*(1+x)^3 + 6*x^2*(1+x)^8 + 10*x^3*(1+x)^15 + 15*x^4*(1+x)^24 + 21*x^5*(1+x)^35 + 28*x^6*(1+x)^48 + 36*x^7*(1+x)^63 + 45*x^8*(1+x)^80 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, (m+1)*(m+2)/2 * x^m * (1+x +x*O(x^n))^(m*(m+2)) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
Showing 1-2 of 2 results.