A325588 Number of necklace compositions of n with equal circular differences up to sign.
1, 2, 3, 4, 4, 7, 5, 9, 8, 10, 8, 17, 9, 14, 15, 22, 12, 23, 14, 31, 23, 25, 19, 48, 25, 35, 36, 56, 33, 59, 43, 86, 64, 74, 76, 136, 95, 127, 138, 219, 178, 245, 249, 372, 370, 445, 506, 747, 730, 907, 1069, 1431, 1544, 1927, 2268, 2981, 3332, 4074, 4896, 6320
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 9 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (12) (13) (14) (15) (16) (17) (111) (22) (23) (24) (25) (26) (1111) (11111) (33) (34) (35) (222) (1111111) (44) (1212) (1232) (111111) (1313) (2222) (11111111)
Links
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&SameQ@@Abs[Differences[Append[#,First[#]]]]&]],{n,15}]
-
PARI
step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )} w(n,s)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)==s), t=0, m=1); while(R, R=step(R,n,s); m++; t+=sumdiv(n, d, R[d,k]*d*eulerphi(n/d))/m ); t/n)} a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 24 2019
Extensions
Terms a(26) and beyond from Andrew Howroyd, Aug 24 2019
Comments