cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325591 Number of compositions of n with circular differences all equal to 1, 0, or -1.

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 27, 43, 68, 116, 189, 311, 519, 860, 1433, 2380, 3968, 6613, 11018, 18374, 30633, 51089, 85208, 142113, 237055, 395409, 659576, 1100262, 1835382, 3061711, 5107445, 8520122, 14213135, 23710173, 39553138, 65982316, 110071459, 183620990, 306316328
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The circular differences of a composition c of length k are c_{i + 1} - c_i for i < k and c_1 - c_i for i = k. For example, the circular differences of (1,2,1,3) are (1,-1,2,-2).

Examples

			The a(1) = 1 through a(6) = 15 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (22)    (23)     (33)
             (21)   (112)   (32)     (222)
             (111)  (121)   (122)    (1122)
                    (211)   (212)    (1212)
                    (1111)  (221)    (1221)
                            (1112)   (2112)
                            (1121)   (2121)
                            (1211)   (2211)
                            (2111)   (11112)
                            (11111)  (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ[1,##]&@@Abs[DeleteCases[Differences[Append[#,First[#]]],0]]&]],{n,15}]
  • PARI
    step(R,n,D)={matrix(n, n, i, j, if(i>j, sum(k=1, #D, my(s=D[k]); if(j>s && j+s<=n, R[i-j, j-s]))) )}
    a(n)={sum(k=1, n, my(R=matrix(n,n,i,j,i==j&&abs(i-k)<=1), t=0); while(R, t+=R[n,k]; R=step(R,n,[0,1,-1])); t)} \\ Andrew Howroyd, Aug 23 2019

Formula

a(n) ~ c * d^n, where d = 1.66820206701846111636107... (see A034297), c = 0.65837031047271348106444... - Vaclav Kotesovec, Sep 21 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 23 2019