A325592 Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 0, 1, 3, 4, 2, 0, 0, 1, 0, 1, 4, 3, 3, 0, 0, 0, 1, 0, 1, 4, 7, 2, 2, 0, 0, 0, 1, 0, 1, 5, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 5, 10, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 6, 9, 5, 1, 2, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 1 2 0 1 0 1 2 2 0 1 0 1 3 2 0 0 1 0 1 3 4 2 0 0 1 0 1 4 3 3 0 0 0 1 0 1 4 7 2 2 0 0 0 1 0 1 5 6 4 2 0 0 0 0 1 0 1 5 10 6 4 2 0 0 0 0 1 0 1 6 9 5 1 2 0 0 0 0 0 1 0 1 6 14 10 5 2 2 0 0 0 0 0 1 0 1 7 13 11 3 3 2 0 0 0 0 0 0 1 0 1 7 19 16 7 3 2 2 0 0 0 0 0 0 1 Row n = 12 counts the following partitions (A = 10, B = 11, C = 12): (C) (66) (444) (3333) (81111) (222222) (111111111111) (75) (543) (5511) (711111) (84) (552) (7221) (93) (732) (7311) (A2) (741) (9111) (B1) (822) (831) (921) (A11)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10010
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,{k}],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15},{k,0,n}]
Comments