A325602 Lower left-hand x-coordinate for 2 X 2 invisible forest with 0 < x < y.
14, 14, 20, 44, 39, 21, 45, 34, 50, 21, 44, 39, 54, 75, 45, 65, 34, 77, 74, 69, 90, 56, 50, 84, 76, 33, 84, 14, 20, 69, 55, 111, 75, 33, 14, 105, 35, 119, 95, 20, 56, 35, 74, 90, 110, 104, 76, 62, 20, 35
Offset: 1
Keywords
Examples
(14,20), (14,35), (20,35), (44,54), (39,65), (21,77), (45,69), (34,84), ...
Links
- Benjamin Hutz, Table of n, a(n) for n = 1..1000
- E. Goins, P. Harris, B. Kubik, A. Mbirika, Lattice Point Visibility on Generalized Lines of Sight, arXiv:1710.04554 [math.NT], 2017; Amer. Math. Monthly 125 (2018) 593-601.
- F. Herzog, B. M. Stewart, Patterns of Visible and Nonvisible Lattice Points, Amer. Math. Monthly 78 (1971) 487-496
- S. Laishram, F. Luca, Rectangles Of Nonvisible Lattice Points, J. Int. Seq. 18 (2015) 15.10.8.
Programs
-
Python
def is_nxn(x,y,n): if all([gcd(x+a,y+b) != 1 for a in range(n) for b in range(n)]): return True return False def insert_item(pts, item, index): N = len(pts) if N == 0: return [item] elif N == 1: if item[index] < pts[0][index]: pts.insert(0,item) else: pts.append(item) return pts else: #binary insertion left = 1 right = N mid = ((left + right)/2).floor() if item[index] < pts[mid][index]: # item goes into first half return insert_item(pts[:mid], item, index) + pts[mid:N] else: # item goes into second half return pts[:mid] + insert_item(pts[mid:N], item, index) B=1200 L=[] for x in range(1,B): for y in range(x+1,B): if is_nxn(x,y,n=2): G=[x,y,x^2+y^2] L=insert_item(L, G, 2)
Comments