cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Benjamin Hutz

Benjamin Hutz's wiki page.

Benjamin Hutz has authored 6 sequences.

A325605 Lower left-hand y-coordinate for 3 X 3 invisible forest with 0 < x < y.

Original entry on oeis.org

1308, 2000, 2330, 2714, 3128, 2540, 2924, 3080, 3484, 3794, 3730, 4654, 4730, 4234, 4640, 4718, 5300, 5564, 5654, 4928, 5704, 5654, 5718, 4598, 5654, 4640, 5642, 6200, 4640, 5150, 4598, 6094, 5984, 5984, 6408, 6460, 4674, 4794, 6104, 5620
Offset: 1

Author

Benjamin Hutz, May 31 2019

Keywords

Comments

These are 3 X 3 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			1308 is a term because (1274, 1308) is the lower left-hand coordinate of a 3 X 3 invisible forest, i.e., gcd(1274+i, 1308+j) > 1 for 0 <= i <= 2 and 0 <= j <= 2.
Other such coordinates are (1884, 2000), (1924, 2330), (1448, 2714), (594, 3128), (2254, 2540), (2364, 2924), (2210, 3080), (1598, 3484), (1000, 3794).
		

A325606 Lower left-hand x-coordinate for 4 X 4 invisible forest with 0 < x < y.

Original entry on oeis.org

7247643, 6349914, 13449225, 3268473, 16799913, 12209988, 7676094, 25869732, 27330093, 19113828, 3689958, 8579373, 35193585, 10557390, 31662993, 40976505, 20262723, 47516988, 12932424, 10792494, 13027728, 24801060, 44040840, 37959282, 42196362, 16439577, 43732038
Offset: 1

Author

Benjamin Hutz, May 31 2019

Keywords

Comments

These are 4 X 4 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			(7247643, 10199370), (6349914, 13125369), (13449225, 13458288), (3268473, 21374352), (16799913, 22339875)
		

Extensions

a(6)-a(27) from Giovanni Resta, Jun 05 2019

A325607 Lower left-hand y-coordinate for 4 X 4 invisible forest with 0 < x < y.

Original entry on oeis.org

10199370, 13125369, 13458288, 21374352, 22339875, 29634813, 39738060, 32719728, 42182412, 47211294, 51258282, 53418859, 43209969, 55756413, 48330114, 49362234, 62965329, 52850433, 72584082, 73167345, 73891893, 71088744, 61716444, 66526029, 69342999, 80514873, 71127132
Offset: 1

Author

Benjamin Hutz, May 31 2019

Keywords

Comments

These are 4 X 4 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			(7247643, 10199370), (6349914, 13125369), (13449225, 13458288), (3268473, 21374352), (16799913, 22339875)
		

Extensions

a(6)-a(27) from Giovanni Resta, Jun 05 2019

A325604 Lower left-hand x-coordinate for 3 X 3 invisible forest with 0 < x < y.

Original entry on oeis.org

1274, 1884, 1924, 1448, 594, 2254, 2364, 2210, 1598, 1000, 2624, 740, 664, 2408, 1924, 1924, 494, 1000, 230, 2914, 650, 1000, 644, 3794, 1924, 3794, 2430, 104, 4146, 3534, 4234, 1748, 2254, 2408, 1274, 1064, 4640, 4520, 2484, 3794
Offset: 1

Author

Benjamin Hutz, May 10 2019

Keywords

Comments

These are 3 X 3 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			(1274,1308), (1884,2000), (1924,2330), (1448,2714), (594,3128), (2254,2540), (2364,2924), (2210,3080), (1598,3484), (1000,3794)
		

A325602 Lower left-hand x-coordinate for 2 X 2 invisible forest with 0 < x < y.

Original entry on oeis.org

14, 14, 20, 44, 39, 21, 45, 34, 50, 21, 44, 39, 54, 75, 45, 65, 34, 77, 74, 69, 90, 56, 50, 84, 76, 33, 84, 14, 20, 69, 55, 111, 75, 33, 14, 105, 35, 119, 95, 20, 56, 35, 74, 90, 110, 104, 76, 62, 20, 35
Offset: 1

Author

Benjamin Hutz, May 10 2019

Keywords

Comments

These are 2 X 2 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			(14,20), (14,35), (20,35), (44,54), (39,65), (21,77), (45,69), (34,84), ...
		

Programs

  • Python
    def is_nxn(x,y,n):
        if all([gcd(x+a,y+b) != 1 for a in range(n) for b in range(n)]):
            return True
        return False
    def insert_item(pts, item, index):
        N = len(pts)
        if N == 0:
          return [item]
        elif N == 1:
            if item[index] < pts[0][index]:
                pts.insert(0,item)
            else:
                pts.append(item)
            return pts
        else: #binary insertion
            left = 1
            right = N
            mid = ((left + right)/2).floor()
            if item[index] < pts[mid][index]:
            # item goes into first half
                return insert_item(pts[:mid], item, index) + pts[mid:N]
            else:
            # item goes into second half
                return pts[:mid] + insert_item(pts[mid:N], item, index)
    B=1200
    L=[]
    for x in range(1,B):
        for y in range(x+1,B):
            if is_nxn(x,y,n=2):
                G=[x,y,x^2+y^2]
                L=insert_item(L, G, 2)

A325603 Lower left-hand y-coordinate for 2 X 2 invisible forest with 0 < x < y.

Original entry on oeis.org

20, 35, 35, 54, 65, 77, 69, 84, 84, 98, 99, 104, 99, 95, 114, 104, 119, 98, 110, 114, 104, 132, 135, 119, 132, 153, 135, 174, 174, 161, 175, 147, 170, 186, 189, 159, 189, 153, 170, 195, 189, 195, 185, 195, 185, 195, 209, 216, 224, 224
Offset: 1

Author

Benjamin Hutz, May 10 2019

Keywords

Comments

These are 2 X 2 rectangles of lattice points not visible along straight lines of sight from the origin. The sequence is ordered by Euclidean distance from (0,0).

Examples

			(14,20), (14,35), (20,35), (44,54), (39,65), (21,77), (45,69), (34,84).
		

Programs

  • SageMath
    def is_nxn(x,y,n):
        if all([gcd(x+a,y+b) != 1 for a in range(n) for b in range(n)]):
            return True
        return False
    def insert_item(pts, item, index):
        N = len(pts)
        if N == 0:
          return [item]
        elif N == 1:
            if item[index] < pts[0][index]:
                pts.insert(0,item)
            else:
                pts.append(item)
            return pts
        else: #binary insertion
            left = 1
            right = N
            mid = ((left + right)/2).floor()
            if item[index] < pts[mid][index]:
            # item goes into first half
                return insert_item(pts[:mid], item, index) + pts[mid:N]
            else:
            # item goes into second half
                return pts[:mid] + insert_item(pts[mid:N], item, index)
    B=1200
    L=[]
    for x in range(1,B):
        for y in range(x+1,B):
            if is_nxn(x,y,n=2):
                G=[x,y,x^2+y^2]
                L=insert_item(L, G, 2)