A325603 Lower left-hand y-coordinate for 2 X 2 invisible forest with 0 < x < y.
20, 35, 35, 54, 65, 77, 69, 84, 84, 98, 99, 104, 99, 95, 114, 104, 119, 98, 110, 114, 104, 132, 135, 119, 132, 153, 135, 174, 174, 161, 175, 147, 170, 186, 189, 159, 189, 153, 170, 195, 189, 195, 185, 195, 185, 195, 209, 216, 224, 224
Offset: 1
Keywords
Examples
(14,20), (14,35), (20,35), (44,54), (39,65), (21,77), (45,69), (34,84).
Links
- Benjamin Hutz, Table of n, a(n) for n = 1..1000
- E. Goins, P. Harris, B. Kubik, A. Mbirika, Lattice Point Visibility on Generalized Lines of Sight, arXiv:1710.04554 [math.NT], 2017; Amer. Math. Monthly 125 (2018) 593-601.
- F. Herzog, B. M. Stewart, Patterns of Visible and Nonvisible Lattice Points, Amer. Math. Monthly 78 (1971) 487-496
- S. Laishram, F. Luca, Rectangles Of Nonvisible Lattice Points, J. Int. Seq. 18 (2015) 15.10.8.
Programs
-
SageMath
def is_nxn(x,y,n): if all([gcd(x+a,y+b) != 1 for a in range(n) for b in range(n)]): return True return False def insert_item(pts, item, index): N = len(pts) if N == 0: return [item] elif N == 1: if item[index] < pts[0][index]: pts.insert(0,item) else: pts.append(item) return pts else: #binary insertion left = 1 right = N mid = ((left + right)/2).floor() if item[index] < pts[mid][index]: # item goes into first half return insert_item(pts[:mid], item, index) + pts[mid:N] else: # item goes into second half return pts[:mid] + insert_item(pts[mid:N], item, index) B=1200 L=[] for x in range(1,B): for y in range(x+1,B): if is_nxn(x,y,n=2): G=[x,y,x^2+y^2] L=insert_item(L, G, 2)
Comments