A325616 Triangle read by rows where T(n,k) is the number of length-k integer partitions of n into factorial numbers.
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 2 1 1 1 1 1 0 0 0 0 1 1 2 1 1 1 1 1 0 0 1 0 1 1 2 2 1 1 1 1 1 0 0 0 1 0 1 1 2 2 1 1 1 1 1 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1 0 0 0 0 1 1 1 1 2 2 2 1 1 1 1 1 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1 0 0 0 0 0 1 1 2 1 2 2 2 2 1 1 1 1 1 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1 0 0 0 0 1 0 1 1 2 2 2 2 2 2 2 1 1 1 1 1 0 0 0 0 1 1 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1 Row n = 12 counts the following partitions: (66) (6222) (62211) (222222) (621111) (2222211) (6111111) (22221111) (222111111) (2211111111) (21111111111) (111111111111)
Crossrefs
Programs
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-y*x^(i!)),{i,1,n}],{x,0,n},{y,0,k}],{n,0,15},{k,0,n}]
Formula
T(n,k) is the coefficient of x^n * y^k in the expansion of Product_{i > 0} 1/(1 - y * x^(i!)).