A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 9: {2,2} 16: {1,1,1,1} 18: {1,2,2} 32: {1,1,1,1,1} 36: {1,1,2,2} 64: {1,1,1,1,1,1} 72: {1,1,1,2,2} 81: {2,2,2,2} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 162: {1,2,2,2,2} 256: {1,1,1,1,1,1,1,1} 288: {1,1,1,1,1,2,2} 324: {1,1,2,2,2,2} 375: {2,3,3,3} 512: {1,1,1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Comments