cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]