cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325642 a(1) = 1; for n > 1, a(n) = k for the least divisor d > 1 of n such that A048720(d,k) = n for some k.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 7, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 1, 13, 9, 14, 1, 15, 1, 16, 31, 17, 13, 18, 1, 19, 29, 20, 1, 21, 1, 22, 27, 23, 1, 24, 11, 25, 17, 26, 1, 27, 1, 28, 23, 29, 1, 30, 1, 31, 21, 32, 21, 33, 1, 34, 1, 35, 1, 36, 1, 37, 57, 38, 1, 39, 1, 40, 1, 41, 1, 42, 17, 43, 1, 44, 1, 45, 1, 46, 7, 47, 19
Offset: 1

Views

Author

Antti Karttunen, May 11 2019

Keywords

Comments

For n > 1, we first find the least divisor d of n that is larger than 1 and for which it holds that when the binary expansion of d is converted to a (0,1)-polynomial (e.g., 13=1101[2] encodes X^3 + X^2 + 1), then that polynomial is a divisor of (0,1)-polynomial similarly converted from n, when the division is done over GF(2). a(n) is then the quotient polynomial converted back to decimal via its binary encoding. See the example.

Examples

			For n = 9, its least nontrivial divisor is 3, and we find that 3 (in binary "11") corresponds to polynomial X + 1, which in this case is a factor of polynomial X^3 + 1 (corresponding to 9 as 9 is "1001" in binary) as the latter factorizes as (X + 1)(X^2 + X + 1) over GF(2), that is, 9 = A048720(3,7). Thus a(9) = 7.
		

Crossrefs

Programs

  • PARI
    A325642(n) = if(1==n,n, my(p = Pol(binary(n))*Mod(1, 2)); fordiv(n,d,if((d>1),my(q = Pol(binary(d))*Mod(1, 2)); if(0==(p%q), return(fromdigits(Vec(lift(p/q)),2))))));

Formula

For all n >= 1, A048720(a(n), A325643(n)) = n.