cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325656 a(n) = (1/24)*n*((4*n + 3)*(2*n^2 + 1) - 3*(-1)^n).

Original entry on oeis.org

0, 1, 8, 36, 104, 245, 492, 896, 1504, 2385, 3600, 5236, 7368, 10101, 13524, 17760, 22912, 29121, 36504, 45220, 55400, 67221, 80828, 96416, 114144, 134225, 156832, 182196, 210504, 242005, 276900, 315456, 357888, 404481, 455464, 511140, 571752, 637621, 709004, 786240
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325655.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3)));
    
  • Magma
    [(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): n in [0..50]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3); Array[a,50,0]
  • PARI
    a(n) = (1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3);

Formula

O.g.f.: -x*(1 + 5*x + 13*x*2 + 9*x^3 + 4*x^4)/((-1 + x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 78*exp(2*x)*x + 54*exp(2*x)*x^2 + 8*exp(2*x)*x*3).
a(n) = a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (1/12)*n^2*(4*n^2 + 3*n + 2) if n is even.
a(n) = (1/12)*n*(n + 1)*(4*n^2 - n + 3) if n is odd.
a(n) = n*A173722(2*n). - Stefano Spezia, Dec 21 2021