A325657 a(n) = (1/2)*(-1 + (-1)^n)*(n-1) + n^2.
0, 1, 4, 7, 16, 21, 36, 43, 64, 73, 100, 111, 144, 157, 196, 211, 256, 273, 324, 343, 400, 421, 484, 507, 576, 601, 676, 703, 784, 813, 900, 931, 1024, 1057, 1156, 1191, 1296, 1333, 1444, 1483, 1600, 1641, 1764, 1807, 1936, 1981, 2116, 2163, 2304, 2353, 2500, 2551
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
GAP
Flat(List([0..55], n->(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2));
-
Magma
[(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2: n in [0..55]];
-
Maple
a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..55);
-
Mathematica
Table[(1/2)*(- 1+(-1)^n)*(n-1)+n^2,{n,0,55}]
-
PARI
a(n) = (1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2;
Formula
O.g.f.: (-1 - 3*x - x^2 - 3*x^3)/((-1 + x)^3*(1+x)^2).
E.g.f.: (1/2)*exp(-x)*(-1 - x + exp(2*x)*(1 + x + 2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4
a(n) = n^2 if n is even.
a(n) = n^2 - n + 1 if n is odd.
Comments