cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325657 a(n) = (1/2)*(-1 + (-1)^n)*(n-1) + n^2.

Original entry on oeis.org

0, 1, 4, 7, 16, 21, 36, 43, 64, 73, 100, 111, 144, 157, 196, 211, 256, 273, 324, 343, 400, 421, 484, 507, 576, 601, 676, 703, 784, 813, 900, 931, 1024, 1057, 1156, 1191, 1296, 1333, 1444, 1483, 1600, 1641, 1764, 1807, 1936, 1981, 2116, 2163, 2304, 2353, 2500, 2551
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th element of the diagonal of the triangle A325655. Equivalently, a(n) is the element M_{n,1} of the matrix M(n) whose permanent is A322277(n).

Crossrefs

Programs

  • GAP
    Flat(List([0..55], n->(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2));
    
  • Magma
    [(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2: n in [0..55]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..55);
  • Mathematica
    Table[(1/2)*(- 1+(-1)^n)*(n-1)+n^2,{n,0,55}]
  • PARI
    a(n) = (1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2;

Formula

O.g.f.: (-1 - 3*x - x^2 - 3*x^3)/((-1 + x)^3*(1+x)^2).
E.g.f.: (1/2)*exp(-x)*(-1 - x + exp(2*x)*(1 + x + 2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4
a(n) = n^2 if n is even.
a(n) = n^2 - n + 1 if n is odd.