cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325662 Matula-Goebel numbers of regular rooted stars.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 16, 25, 27, 31, 32, 64, 81, 121, 125, 127, 128, 243, 256, 512, 625, 709, 729, 961, 1024, 1331, 2048, 2187, 3125, 4096, 5381, 6561, 8192, 14641, 15625, 16129, 16384, 19683, 29791, 32768, 52711, 59049, 65536, 78125, 131072, 161051
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

Powers of members of A007097.
A regular rooted star is a rooted tree whose branches are all rooted paths of equal length.
The number of terms <= 10^k, k=0,1,2,...: 1, 7, 15, 26, 35, 46, 56, 67, 76, 87, 98, 109, 121, 131, 142, 154, 163, 175, 185, 198, 208, 220, 231, 241, 254, 265, 275, etc. - Robert G. Wilson v, May 13 2019

Examples

			The sequence of regular rooted stars together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    8: (ooo)
    9: ((o)(o))
   11: ((((o))))
   16: (oooo)
   25: (((o))((o)))
   27: ((o)(o)(o))
   31: (((((o)))))
   32: (ooooo)
   64: (oooooo)
   81: ((o)(o)(o)(o))
  121: ((((o)))(((o))))
  125: (((o))((o))((o)))
  127: ((((((o))))))
  128: (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]];
    Select[Range[100],#==1||PrimePowerQ[#]&&rpQ[FactorInteger[#][[1,1]]]&]
    (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[emax]; s = Union[s, s1], {k, 2, Length[ps]}]; s]; seq[10] (* Amiram Eldar, Jul 26 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Product_{k>=1} 1/(A007097(k)-1) = 2.8928887669834086909... - Amiram Eldar, Jul 26 2024