A325662 Matula-Goebel numbers of regular rooted stars.
1, 2, 3, 4, 5, 8, 9, 11, 16, 25, 27, 31, 32, 64, 81, 121, 125, 127, 128, 243, 256, 512, 625, 709, 729, 961, 1024, 1331, 2048, 2187, 3125, 4096, 5381, 6561, 8192, 14641, 15625, 16129, 16384, 19683, 29791, 32768, 52711, 59049, 65536, 78125, 131072, 161051
Offset: 1
Keywords
Examples
The sequence of regular rooted stars together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 16: (oooo) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o))))) 32: (ooooo) 64: (oooooo) 81: ((o)(o)(o)(o)) 121: ((((o)))(((o)))) 125: (((o))((o))((o))) 127: ((((((o)))))) 128: (ooooooo)
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..275 (terms 1..48 from _Gus Wiseman_)
Crossrefs
Programs
-
Mathematica
rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]]; Select[Range[100],#==1||PrimePowerQ[#]&&rpQ[FactorInteger[#][[1,1]]]&] (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[emax]; s = Union[s, s1], {k, 2, Length[ps]}]; s]; seq[10] (* Amiram Eldar, Jul 26 2024 *)
Formula
Sum_{n>=1} 1/a(n) = 1 + Product_{k>=1} 1/(A007097(k)-1) = 2.8928887669834086909... - Amiram Eldar, Jul 26 2024
Comments