A325663 Matula-Goebel numbers of not necessarily regular rooted stars.
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 36, 40, 44, 45, 48, 50, 54, 55, 60, 62, 64, 66, 72, 75, 80, 81, 88, 90, 93, 96, 99, 100, 108, 110, 120, 121, 124, 125, 127, 128, 132, 135, 144, 150, 155, 160, 162, 165, 176
Offset: 1
Keywords
Examples
The sequence of rooted stars together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 6: (o(o)) 8: (ooo) 9: ((o)(o)) 10: (o((o))) 11: ((((o)))) 12: (oo(o)) 15: ((o)((o))) 16: (oooo) 18: (o(o)(o)) 20: (oo((o))) 22: (o(((o)))) 24: (ooo(o)) 25: (((o))((o))) 27: ((o)(o)(o)) 30: (o(o)((o)))
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10538 (terms up to A007097(12))
Crossrefs
Programs
-
Mathematica
rpQ[n_]:=n==1||PrimeQ[n]&&rpQ[PrimePi[n]]; Select[Range[100],And@@rpQ/@First/@FactorInteger[#]&] (* generates terms <= A007097(max) *) seq[max_] := Module[{ps = NestList[Prime@# &, 1, max], psmax, s = {1}, emax, s1, s2}, pmax = Max[ps]; Do[p = ps[[k]]; emax = Floor[Log[p, pmax]]; s1 = p^Range[0, emax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= pmax &]; s = Union[s, s2], {k, 2, Length[ps]}]; s]; seq[7] (* Amiram Eldar, Jul 26 2024 *)
Formula
Sum_{n>=1} 1/a(n) = Product_{k>=1} A007097(k)/(A007097(k)-1) = 4.30328607286382284593... . - Amiram Eldar, Jul 26 2024
Comments