A325681 Number of necklace compositions of n such that every restriction to a circular subinterval has a different sum.
1, 1, 2, 2, 3, 3, 6, 6, 11, 9, 16, 16, 27, 23, 46, 42, 73, 63, 112, 102, 173, 141, 254, 228, 373, 313, 614, 500, 855, 709, 1252, 1074, 1827, 1457, 2470, 2260, 3559, 2905, 5044, 4294, 6997, 5623, 9752, 8422, 13741, 10913, 18562, 15912, 25213, 20569, 35146, 29286, 46307, 38241, 61396
Offset: 1
Keywords
Examples
The a(1) = 1 through a(10) = 9 necklace compositions (A = 10): (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (12) (13) (14) (15) (16) (17) (18) (19) (23) (24) (25) (26) (27) (28) (34) (35) (36) (37) (124) (125) (45) (46) (142) (152) (126) (127) (135) (136) (153) (163) (162) (172) (234) (243)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..80
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; suball[q_]:=Join[Take[q,#]&/@Select[Tuples[Range[Length[q]],2],OrderedQ],Drop[q,#]&/@Select[Tuples[Range[2,Length[q]-1],2],OrderedQ]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Total/@suball[#]&]],{n,15}]
-
PARI
a(n)={ my(recurse(k,r,b,w)= if(k >= n, 1/r, b+=1<
Andrew Howroyd, Mar 25 2025
Extensions
a(21) onwards from Andrew Howroyd, Mar 24 2025
Comments