A325684 Number of minimal complete rulers of length n.
1, 1, 1, 2, 3, 4, 5, 12, 12, 24, 40, 46, 92, 133, 192, 308, 546, 710, 1108, 1754, 2726, 3878, 5928, 9260, 14238, 20502, 30812, 48378, 72232, 105744, 160308, 241592, 362348, 540362, 797750, 1183984, 1786714
Offset: 0
Examples
The a(1) = 1 through a(7) = 12 rulers: {0,1} {0,1,2} {0,1,3} {0,1,2,4} {0,1,2,5} {0,1,4,6} {0,1,2,3,7} {0,2,3} {0,1,3,4} {0,1,3,5} {0,2,5,6} {0,1,2,4,7} {0,2,3,4} {0,2,4,5} {0,1,2,3,6} {0,1,2,5,7} {0,3,4,5} {0,1,3,5,6} {0,1,3,5,7} {0,3,4,5,6} {0,1,3,6,7} {0,1,4,5,7} {0,1,4,6,7} {0,2,3,6,7} {0,2,4,6,7} {0,2,5,6,7} {0,3,5,6,7} {0,4,5,6,7} The a(1) = 1 through a(9) = 24 compositions: (1) (11) (12) (112) (113) (132) (1114) (1133) (1143) (21) (121) (122) (231) (1123) (1241) (1332) (211) (221) (1113) (1132) (1322) (2331) (311) (1221) (1222) (1412) (3411) (3111) (1231) (1421) (11115) (1312) (2141) (11124) (1321) (2231) (11142) (2131) (3311) (11241) (2221) (11114) (11322) (2311) (11132) (12141) (3211) (23111) (12222) (4111) (41111) (12231) (12312) (13221) (14112) (14121) (14211) (21141) (21321) (22221) (22311) (24111) (42111) (51111)
Programs
Extensions
a(16)-a(36) from Fausto A. C. Cariboni, Feb 27 2022
Comments