A325689 Number of length-3 compositions of n such that no part is the sum of the other two.
0, 0, 0, 1, 0, 6, 4, 15, 12, 28, 24, 45, 40, 66, 60, 91, 84, 120, 112, 153, 144, 190, 180, 231, 220, 276, 264, 325, 312, 378, 364, 435, 420, 496, 480, 561, 544, 630, 612, 703, 684, 780, 760, 861, 840, 946, 924, 1035, 1012, 1128, 1104, 1225, 1200, 1326, 1300, 1431
Offset: 0
Keywords
Examples
The a(3) = 1 through a(8) = 12 compositions (empty columns not shown): (111) (113) (114) (115) (116) (122) (141) (124) (125) (131) (222) (133) (152) (212) (411) (142) (161) (221) (151) (215) (311) (214) (233) (223) (251) (232) (323) (241) (332) (313) (512) (322) (521) (331) (611) (412) (421) (511)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],And@@Table[#[[i]]!=Total[Delete[#,i]],{i,3}]&]],{n,0,30}]
Formula
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 - x + 4*x^2) / ((1 - x)^3*(1 + x)^2) for n>5.
a(n) = -(5 + 3*(-1)^n - 2*n) * (n-2) / 4 for n>0.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
(End)
Comments