cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008642 Quarter-squares repeated.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 12, 12, 16, 16, 20, 20, 25, 25, 30, 30, 36, 36, 42, 42, 49, 49, 56, 56, 64, 64, 72, 72, 81, 81, 90, 90, 100, 100, 110, 110, 121, 121, 132, 132, 144, 144, 156, 156, 169, 169, 182, 182, 196, 196, 210, 210, 225, 225
Offset: 0

Views

Author

Keywords

Comments

The area of the largest rectangle whose perimeter is not greater than n. - Dmitry Kamenetsky, Aug 30 2006
Also number of partitions of n into parts 1, 2 or 4. - Reinhard Zumkeller, Aug 12 2011
Let us consider a rectangle composed of unit squares. Then count how many squares are necessary to surround this rectangle by a layer whose width is 1 unit. And repeat this surrounding ad libitum. This sequence, prepended by 4 zeros and with offset 0, gives the number of rectangles that need 2*n unit squares in one of their surrounding layers. - Michel Marcus, Sep 19 2015
a(n) is the number of nonnegative integer solutions (x,y,z) for n-2 <= 2*x + 3*y + 4*z <= n. For example, the two solutions for 1 <= 2*x + 3*y + 4*z <= 3 are (1,0,0) and (0,1,0). - Ran Pan, Oct 07 2015
Conjecture: Consider the number of compositions of n>=4*k+8 into odd parts, where the order of the parts 1,3,..,2k+1 does not count. Then, as k approaches infinity, a(n-4*k-8) is equal to the number of these restricted compositions minus A000009(n), the number of strict partitions of n. - Gregory L. Simay, Aug 12 2016
From Gus Wiseman, May 17 2019: (Start)
Also the number of length-3 integer partitions of n + 4 whose largest part is greater than the sum of the other two. These are unordered triples that cannot be the sides of a triangle. For example, the a(1) = 1 through a(10) = 9 partitions are (A = 10, B = 11, C = 12):
(311) (411) (421) (521) (522) (622) (632) (732) (733) (833)
(511) (611) (531) (631) (641) (741) (742) (842)
(621) (721) (722) (822) (751) (851)
(711) (811) (731) (831) (832) (932)
(821) (921) (841) (941)
(911) (A11) (922) (A22)
(931) (A31)
(A21) (B21)
(B11) (C11)
(End)
This sequence, prepended by four 0's and with offset 0, is the number of partitions of n into four parts whose smallest two parts are equal. - Wesley Ivan Hurt, Jan 05 2021
This sequence, prepended by four 0's and with offset 0, is the number of incongruent obtuse triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 27 2022

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 112, D(n).

Crossrefs

Cf. A002620.
Cf. A001399, A005044 (triangles without self-intersections), A069905, A124278, A266223, A325686, A325689, A325690, A325691, A325695.

Programs

  • Magma
    [Floor(((n+1)*((-1)^n+n+6)+9)/16): n in [0..70]]; // Vincenzo Librandi, Apr 02 2014
    
  • Maple
    seq((7/8+(-1)^k/8 + k + k^2/4)$2, k=0..100); # Robert Israel, Oct 08 2015
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 02 2014 *)
    LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,2,2,4,4,6}, 70] (* Harvey P. Dale, Jun 03 2015 *)
    Table[Floor[((n + 1) ((-1)^n + n + 6) + 9)/16], {n, 0, 70}] (* Michael De Vlieger, Aug 14 2016 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^4)) + O(x^70)) \\ Michel Marcus, Mar 31 2014
    
  • PARI
    vector(70, n, n--; floor(((n+1)*((-1)^n+n+6)+9)/16)) \\ Altug Alkan, Oct 08 2015
    
  • Sage
    [floor(floor(n/2+2)^2/2)/2 for n in (0..70)] # Bruno Berselli, Mar 03 2016

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)).
a(n) = (2*n^2 + 14*n + 21 + (2*n + 7)*(-1)^n)/32 + ((1 + (-1)^n)/2 - (1 - (-1)^n)*i/2)*i^n/8, with i = sqrt(-1).
a(n) = floor(((n+1)*((-1)^n+n+6)+9)/16). - Tani Akinari, Jun 16 2013
a(n) = Sum_{i=1..floor((n+6)/2)} floor((n+6-2*i-(n mod 2))/4). - Wesley Ivan Hurt, Mar 31 2014
a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=4, a(6)=6; for n>6, a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7). - Harvey P. Dale, Jun 03 2015
a(n) = floor(floor(n/2+2)^2/4) = floor(floor(n/2+2)^2/2)/2. - Bruno Berselli, Mar 03 2016
E.g.f.: ((14 + 7*x + x^2)*cosh(x) + 2*(cos(x) + sin(x)) + (7 + 9*x + x^2)*sinh(x))/16. - Stefano Spezia, Mar 05 2023
a(n) = floor((n + 4)/4)*floor((n + 6)/4). - Ridouane Oudra, Apr 01 2023

A325688 Number of length-3 compositions of n such that every distinct consecutive subsequence has a different sum.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 5, 12, 12, 25, 24, 40, 41, 60, 60, 85, 84, 112, 113, 144, 144, 181, 180, 220, 221, 264, 264, 313, 312, 364, 365, 420, 420, 481, 480, 544, 545, 612, 612, 685, 684, 760, 761, 840, 840, 925, 924, 1012, 1013, 1104, 1104, 1201, 1200, 1300, 1301, 1404
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Confirmed recurrence relation from Colin Barker for n <= 5000. - Fausto A. C. Cariboni, Feb 13 2022

Examples

			The a(3) = 1 through a(8) = 12 compositions:
  (111)  (113)  (114)  (115)  (116)
         (122)  (132)  (124)  (125)
         (221)  (222)  (133)  (143)
         (311)  (231)  (142)  (152)
                (411)  (214)  (215)
                       (223)  (233)
                       (241)  (251)
                       (322)  (332)
                       (331)  (341)
                       (412)  (512)
                       (421)  (521)
                       (511)  (611)
		

Crossrefs

Column k = 3 of A325687.
Cf. A000217 (all length-3).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + 2*x^2 + 4*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)

A325690 Number of length-3 integer partitions of n whose largest part is not the sum of the other two.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 3, 7, 6, 10, 9, 14, 13, 19, 17, 24, 23, 30, 28, 37, 35, 44, 42, 52, 50, 61, 58, 70, 68, 80, 77, 91, 88, 102, 99, 114, 111, 127, 123, 140, 137, 154, 150, 169, 165, 184, 180, 200, 196, 217, 212, 234, 230, 252, 247, 271, 266, 290, 285, 310
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

Confirmed recurrence relation from Colin Barker for n <= 10000. - Fausto A. C. Cariboni, Feb 19 2022

Examples

			The a(3) = 1 through a(13) = 14 partitions (A = 10, B = 11):
  (111)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)   (544)
         (311)  (411)  (331)  (521)  (432)  (442)  (533)  (543)   (553)
                       (421)  (611)  (441)  (622)  (542)  (552)   (643)
                       (511)         (522)  (631)  (551)  (732)   (652)
                                     (531)  (721)  (632)  (741)   (661)
                                     (621)  (811)  (641)  (822)   (733)
                                     (711)         (722)  (831)   (742)
                                                   (731)  (921)   (751)
                                                   (821)  (A11)   (832)
                                                   (911)          (841)
                                                                  (922)
                                                                  (931)
                                                                  (A21)
                                                                  (B11)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^3*(1 + x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8.
(End)

A325686 Number of strict length-3 compositions x + y + z = n satisfying x + y != z and x != y + z.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 6, 8, 18, 16, 30, 34, 48, 48, 72, 72, 96, 98, 126, 128, 162, 160, 198, 202, 240, 240, 288, 288, 336, 338, 390, 392, 450, 448, 510, 514, 576, 576, 648, 648, 720, 722, 798, 800, 882, 880, 966, 970, 1056, 1056, 1152, 1152, 1248, 1250, 1350, 1352
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
From Kevin O'Bryant, Jun 02 2025: (Start)
Also the number of Sidon sets in {0,1,...,n} with 4 elements that contain both 0 and n.
Also, the number of 3-tuples of positive integers with the 6 numbers x, y, z, x+y, y+z, x+y+z=n all distinct. (End)

Examples

			The a(6) = 2 through a(10) = 16 compositions:
  (132)  (124)  (125)  (126)  (127)
  (231)  (142)  (143)  (135)  (136)
         (214)  (152)  (153)  (154)
         (241)  (215)  (162)  (163)
         (412)  (251)  (216)  (172)
         (421)  (341)  (234)  (217)
                (512)  (243)  (253)
                (521)  (261)  (271)
                       (315)  (316)
                       (324)  (352)
                       (342)  (361)
                       (351)  (451)
                       (423)  (613)
                       (432)  (631)
                       (513)  (712)
                       (531)  (721)
                       (612)
                       (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Cases[Join@@Permutations/@IntegerPartitions[n,{3}],{x_,y_,z_}/;x!=y!=z&&x+y!=z &&x!=y+z]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 14 2019: (Start)
G.f.: 2*x^6*(1 + 3*x + 3*x^2 + 5*x^3) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9. (End)
Above conjecture confirmed for n <= 5000. - Fausto A. C. Cariboni, Feb 17 2022

A325696 Number of length-3 strict compositions of n such that no part is the sum of the other two.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 18, 12, 30, 30, 48, 42, 72, 66, 96, 90, 126, 120, 162, 150, 198, 192, 240, 228, 288, 276, 336, 324, 390, 378, 450, 432, 510, 498, 576, 558, 648, 630, 720, 702, 798, 780, 882, 858, 966, 948, 1056, 1032, 1152, 1128, 1248, 1224, 1350
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. It is strict if all parts are distinct.

Examples

			The a(6) = 6 through a(10) = 12 compositions:
  (124)  (125)  (126)  (127)
  (142)  (152)  (135)  (136)
  (214)  (215)  (153)  (163)
  (241)  (251)  (162)  (172)
  (412)  (512)  (216)  (217)
  (421)  (521)  (234)  (271)
                (243)  (316)
                (261)  (361)
                (315)  (613)
                (324)  (631)
                (342)  (712)
                (351)  (721)
                (423)
                (432)
                (513)
                (531)
                (612)
                (621)
		

Crossrefs

Cf. A325686, A325688, A325689 (non-strict case), A325695.

Programs

  • Mathematica
    Table[Length[Cases[Join@@Permutations/@IntegerPartitions[n,{3}],{x_,y_,z_}/;x!=y!=z&&x+y!=z&&x!=y+z&&y!=x+z]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: 6*x^7*(1 + x + 2*x^2) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>9.
(End)
a(n) = 6 * A325695(n). - Alois P. Heinz, Jun 18 2020
Showing 1-5 of 5 results.