A325691 Number of length-3 integer partitions of n whose largest part is not greater than the sum of the other two.
0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 8, 11, 10, 13, 12, 15, 14, 18, 16, 20, 19, 23, 21, 26, 24, 29, 27, 32, 30, 36, 33, 39, 37, 43, 40, 47, 44, 51, 48, 55, 52, 60, 56, 64, 61, 69, 65, 74, 70, 79, 75, 84, 80, 90, 85, 95, 91, 101, 96, 107, 102, 113
Offset: 0
Examples
The a(3) = 1 through a(12) = 6 partitions: (111) (211) (221) (222) (322) (332) (333) (433) (443) (444) (321) (331) (422) (432) (442) (533) (543) (431) (441) (532) (542) (552) (541) (551) (633) (642) (651)
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Colin Defant, Michael Joseph, Matthew Macauley, and Alex McDonough, Torsors and tilings from toric toggling, arXiv:2305.07627 [math.CO], 2023. See g.f. at p. 20.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]<=#[[2]]+#[[3]]&]],{n,0,30}]
Formula
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + x - x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. (End)
a(n) = A005044(n+3) - A000035(n+3). i.e., remove the only one triple (a=0,b,b) if n is even from the A005044 which is the number of triples (a,b,c) for 0 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020
The above conjectured formulas are true. - Stefano Spezia, May 19 2023
Comments