A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.
1, 9, 25, 49, 77, 121, 125, 169, 221, 245, 289, 323, 343, 361, 375, 437, 529, 841, 899, 961, 1331, 1369, 1517, 1681, 1763, 1849, 1859, 2021, 2197, 2209, 2401, 2773, 2809, 2873, 3127, 3481, 3721, 3757, 4087, 4489, 4757, 4913, 5041, 5183, 5329, 5929, 6137, 6241
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 9: {2,2} 25: {3,3} 49: {4,4} 77: {4,5} 121: {5,5} 125: {3,3,3} 169: {6,6} 221: {6,7} 245: {3,4,4} 289: {7,7} 323: {7,8} 343: {4,4,4} 361: {8,8} 375: {2,3,3,3} 437: {8,9} 529: {9,9} 841: {10,10} 899: {10,11} 961: {11,11} For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
Crossrefs
Programs
-
Mathematica
Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Comments