cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325755 Numbers n divisible by their prime shadow A181819(n).

Original entry on oeis.org

1, 2, 9, 12, 18, 36, 40, 60, 84, 112, 120, 125, 132, 156, 180, 204, 225, 228, 250, 252, 276, 280, 336, 348, 352, 360, 372, 396, 440, 441, 444, 450, 468, 492, 516, 520, 540, 560, 564, 600, 612, 636, 675, 680, 684, 708, 732, 760, 804, 828, 832, 840, 852, 876
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions containing their multiset of multiplicities as a submultiset (counted by A325702).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
    60: {1,1,2,3}
    84: {1,1,2,4}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   132: {1,1,2,5}
   156: {1,1,2,6}
   180: {1,1,2,2,3}
   204: {1,1,2,7}
   225: {2,2,3,3}
   228: {1,1,2,8}
   250: {1,3,3,3}
   252: {1,1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Divisible[#,red[#]]&]