A325763
Heinz numbers of integer partitions whose consecutive subsequence-sums cover an initial interval of positive integers.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 216, 224, 240, 256, 280, 288, 300, 320, 324, 336, 352, 360, 384, 392, 400, 416, 432, 448, 480, 486, 500, 504, 512
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{_,s__,_}:>Plus[s]]]&]
A325765
Number of integer partitions of n with a unique consecutive subsequence summing to every positive integer from 1 to n.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3
Offset: 0
The a(1) = 1 through a(13) = 3 partitions:
(1) (11) (21) (1111) (221) (111111) (2221) (3311)
(111) (311) (4111) (11111111)
(11111) (1111111)
.
(22221) (1111111111) (33311) (111111111111) (2222221)
(51111) (44111) (7111111)
(111111111) (222221) (1111111111111)
(611111)
(11111111111)
Cf.
A000041,
A002033,
A103295,
A103300,
A143823,
A169942,
A325676,
A325683,
A325768,
A325769,
A325770.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[IntegerPartitions[n],normQ[Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]]&&UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,20}]
Showing 1-2 of 2 results.
Comments