cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325767 Heinz numbers of integer partitions covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).

Original entry on oeis.org

1, 2, 12, 18, 36, 60, 120, 180, 360, 450, 540, 600, 840, 1260, 1350, 1500, 1680, 1800, 2250, 2520, 2700, 3000, 3780, 4200, 4500, 5040, 5400, 5880, 6750, 8400, 9000, 10500, 11340, 11760, 12600, 13500, 15120, 17640, 18480, 18900, 20580, 21000, 22680, 25200
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325766.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    60: {1,1,2,3}
   120: {1,1,1,2,3}
   180: {1,1,2,2,3}
   360: {1,1,1,2,2,3}
   450: {1,2,2,3,3}
   540: {1,1,2,2,2,3}
   600: {1,1,1,2,3,3}
   840: {1,1,1,2,3,4}
  1260: {1,1,2,2,3,4}
  1350: {1,2,2,2,3,3}
  1500: {1,1,2,3,3,3}
  1680: {1,1,1,1,2,3,4}
  1800: {1,1,1,2,2,3,3}
  2250: {1,2,2,3,3,3}
  2520: {1,1,1,2,2,3,4}
		

Crossrefs

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&Divisible[#,red[#]]&]