A325767 Heinz numbers of integer partitions covering an initial interval of positive integers and containing their own multiset of multiplicities (as a submultiset).
1, 2, 12, 18, 36, 60, 120, 180, 360, 450, 540, 600, 840, 1260, 1350, 1500, 1680, 1800, 2250, 2520, 2700, 3000, 3780, 4200, 4500, 5040, 5400, 5880, 6750, 8400, 9000, 10500, 11340, 11760, 12600, 13500, 15120, 17640, 18480, 18900, 20580, 21000, 22680, 25200
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 12: {1,1,2} 18: {1,2,2} 36: {1,1,2,2} 60: {1,1,2,3} 120: {1,1,1,2,3} 180: {1,1,2,2,3} 360: {1,1,1,2,2,3} 450: {1,2,2,3,3} 540: {1,1,2,2,2,3} 600: {1,1,1,2,3,3} 840: {1,1,1,2,3,4} 1260: {1,1,2,2,3,4} 1350: {1,2,2,2,3,3} 1500: {1,1,2,3,3,3} 1680: {1,1,1,1,2,3,4} 1800: {1,1,1,2,2,3,3} 2250: {1,2,2,3,3,3} 2520: {1,1,1,2,2,3,4}
Crossrefs
Programs
-
Mathematica
red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; Select[Range[1000],#==1||Range[PrimeNu[#]]==PrimePi/@First/@FactorInteger[#]&&Divisible[#,red[#]]&]
Comments