A325783 Reading the first row of this array, or the first column, or the successive antidiagonals is the same as reading this sequence.
1, 2, 2, 2, 3, 2, 2, 4, 5, 2, 3, 6, 7, 8, 3, 2, 9, 10, 11, 12, 2, 2, 13, 14, 15, 16, 17, 2, 4, 18, 19, 20, 21, 22, 23, 4, 5, 24, 25, 26, 27, 28, 29, 30, 5, 2, 31, 32, 33, 34, 35, 36, 37, 38, 2, 3, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 6, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 6, 7, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 7, 8, 69
Offset: 1
Examples
Array: 1 2 2 2 3 2 2 4 5 2 3 ... 2 3 4 6 9 13 18 24 31 39 48 ... 2 5 7 10 14 19 25 32 40 49 59 ... 2 8 11 15 20 26 33 41 50 60 71 ... 3 12 16 21 27 34 42 51 61 72 84 ... 2 17 22 28 35 43 52 62 73 85 98 ... 2 23 29 36 44 53 63 74 86 99 113 ... 4 30 37 45 54 61 75 87 100 112 129 ... 5 38 46 55 62 76 88 101 113 130 146 ... 2 47 56 63 77 89 102 114 131 147 164 ... 3 57 64 78 90 101 115 132 148 165 183 ... ...
Crossrefs
Formula
a(n*(n+1)/2) = a(n*(n-1)/2+1) = a(n). - Rémy Sigrist, May 21 2019
T(n+1,k+1) = A000027(n,k) + 2 if both sequences are read as square arrays. - Charlie Neder, Jun 03 2019
From Bernard Schott, Jun 03 2019: (Start)
For 2 <= q <= k:
a(k*(k+1)/2 + 2) = (k-2)*(k-1)/2 + 3.
a(k*(k+1)/2 + q) = (k-2)*(k-1)/2 + q + 1.
a(k*(k+1)/2 + k) = a(k*(k+3)/2) = (k-2)*(k-1)/2 + k + 1 = (k^2-k+4)/2. (End)
Comments