A325792 Positive integers with as many proper divisors as the sum of their prime indices.
1, 2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 56, 64, 100, 128, 162, 176, 204, 234, 256, 260, 294, 308, 315, 350, 392, 416, 486, 500, 512, 690, 696, 798, 920, 1024, 1026, 1064, 1088, 1116, 1122, 1190, 1365, 1430, 1458, 1496, 1755, 1936, 1968, 2025, 2048, 2058, 2079
Offset: 1
Keywords
Examples
The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7. The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 32: {1,1,1,1,1} 42: {1,2,4} 54: {1,2,2,2} 56: {1,1,1,4} 64: {1,1,1,1,1,1} 100: {1,1,3,3} 128: {1,1,1,1,1,1,1} 162: {1,2,2,2,2} 176: {1,1,1,1,5} 204: {1,1,2,7} 234: {1,2,2,6} 256: {1,1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
Comments