A325793 Positive integers whose number of divisors is equal to their sum of prime indices.
3, 10, 28, 66, 70, 88, 208, 228, 306, 340, 364, 490, 495, 525, 544, 550, 675, 744, 870, 966, 1160, 1216, 1242, 1254, 1288, 1326, 1330, 1332, 1672, 1768, 1785, 1870, 2002, 2064, 2145, 2295, 2457, 2900, 2944, 3250, 3280, 3430, 3468, 3540, 3724, 4125, 4144, 4248
Offset: 1
Keywords
Examples
The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8. The sequence of terms together with their prime indices begins: 3: {2} 10: {1,3} 28: {1,1,4} 66: {1,2,5} 70: {1,3,4} 88: {1,1,1,5} 208: {1,1,1,1,6} 228: {1,1,2,8} 306: {1,2,2,7} 340: {1,1,3,7} 364: {1,1,4,6} 490: {1,3,4,4} 495: {2,2,3,5} 525: {2,3,3,4} 544: {1,1,1,1,1,7} 550: {1,3,3,5} 675: {2,2,2,3,3} 744: {1,1,1,2,11} 870: {1,2,3,10} 966: {1,2,4,9}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,t; F:= ifactors(n)[2]; add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F) end proc: select(filter, [$1..10000]); # Robert Israel, Oct 16 2023
-
Mathematica
Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
Comments