A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices.
3, 10, 28, 66, 88, 156, 208, 306, 340, 408, 544, 570, 684, 760, 912, 966, 1216, 1242, 1288, 1380, 1656, 1840, 2208, 2436, 2610, 2900, 2944, 3132, 3248, 3480, 3906, 4092, 4176, 4340, 4640, 4650, 5022, 5208, 5456, 5568, 5580, 6200, 6696, 6944, 7326, 7424, 7440
Offset: 1
Keywords
Examples
340 has prime indices {1,1,3,7} which sum to 12 and have 12 distinct subset-sums: {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so 340 is in the sequence. The sequence of terms together with their prime indices begins: 3: {2} 10: {1,3} 28: {1,1,4} 66: {1,2,5} 88: {1,1,1,5} 156: {1,1,2,6} 208: {1,1,1,1,6} 306: {1,2,2,7} 340: {1,1,3,7} 408: {1,1,1,2,7} 544: {1,1,1,1,1,7} 570: {1,2,3,8} 684: {1,1,2,2,8} 760: {1,1,1,3,8} 912: {1,1,1,1,2,8} 966: {1,2,4,9} 1216: {1,1,1,1,1,1,8} 1242: {1,2,2,2,9} 1288: {1,1,1,4,9} 1380: {1,1,2,3,9}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,t,S,i,r; F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); S:= {0}: for t in F do S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); od; nops(S) = add(t[1]*t[2],t=F) end proc: select(filter, [$1..10000]); # Robert Israel, Oct 30 2024
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; Select[Range[1000],hwt[#]==Length[Union[hwt/@Divisors[#]]]&]
Comments