A325802 Numbers with one more divisor than distinct subset-sums of their prime indices.
12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 525, 550, 561, 595, 646, 675, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1666, 1672, 1771, 1794, 1798, 1870, 1900
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 12: {1,1,2} 30: {1,2,3} 40: {1,1,1,3} 63: {2,2,4} 70: {1,3,4} 112: {1,1,1,1,4} 154: {1,4,5} 165: {2,3,5} 198: {1,2,2,5} 220: {1,1,3,5} 273: {2,4,6} 286: {1,5,6} 325: {3,3,6} 351: {2,2,2,6} 352: {1,1,1,1,1,5} 364: {1,1,4,6} 442: {1,6,7} 525: {2,3,3,4} 550: {1,3,3,5} 561: {2,5,7}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F,t,S,i; F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); S:= {0}: for t in F do S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); od; nops(S) = mul(t[2]+1,t=F)-1 end proc: select(filter, [$1..2000]); # Robert Israel, Oct 30 2024
-
Mathematica
Select[Range[100],DivisorSigma[0,#]==1+Length[Union[hwt/@Divisors[#]]]&]
Comments