cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325804 Positions of nonzero terms of Product_{k=0..floor(log_2(n))} (1 + A004718(floor(n/(2^k)))).

Original entry on oeis.org

0, 1, 3, 6, 7, 12, 14, 15, 24, 25, 28, 29, 30, 31, 48, 50, 51, 56, 57, 58, 60, 61, 62, 63, 96, 97, 100, 101, 102, 103, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, 124, 125, 126, 127, 192, 194, 195, 200, 201, 202, 204, 205, 206, 207, 224, 225, 226, 228
Offset: 1

Views

Author

Mikhail Kurkov, May 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_?EvenQ] := a[n] = -a[n/2]; a[0] = 0; a[n_] := a[n] = a[(n - 1)/2] + 1; -1 + Position[Table[Product[ 1 + a[Floor[n/(2^k)]], {k, 0, Floor[Log2[n]]}], {n, 0, 500}], ?(# != 0 &)][[All, 1]] (* _Michael De Vlieger, Apr 22 2024, after Jean-François Alcover at A004718 *)
  • PARI
    b(n) = if(n==0, 0, (-1)^(n+1)*b(n\2) + n%2); \\ A004718
    f(n) = if(n==0, 1, prod(k=0, logint(n,2), 1+b(n\2^k)));
    isok(n) = f(n)!=0; \\ Michel Marcus, May 24 2019
    
  • Python
    from itertools import count, islice
    def A325804_gen(startvalue=0): # generator of terms >= startvalue
        for n in count(max(startvalue,0)):
            c, s = [0]*(m:=n.bit_length()), bin(n)[2:]
            for i in range(m):
                if s[i]=='1':
                    for j in range(m-i):
                        c[j] = c[j]+1
                else:
                    for j in range(m-i):
                        c[j] = -c[j]
            if all(1+d for d in c): yield n
    A325804_list = list(islice(A325804_gen(),20)) # Chai Wah Wu, Mar 03 2023

Formula

Conjecture: a(n) - a(n-1) belongs to A094373. - Mikhail Kurkov, Feb 20 2021