A325808 Numbers n such that sigma(n) can be obtained as the base-3 carryless product of 2n and some k.
1, 6, 28, 120, 259, 496, 8128, 18990, 667296, 1858939, 2097414, 2383279, 4843717, 33550336, 150588313, 186695863, 188908297
Offset: 1
Examples
2*120 has ternary representation (A007089) 22220_3, thus it encodes polynomial 2*x^4 + 2*x^3 + 2*x^2 + 2*x, while sigma(120) = 360 = 111100_3, encodes polynomial x^5 + x^4 + x^3 + x^2 which is a multiple of the former as it is equal to 2x(x^4 + x^3 + x^2 + x) when polynomial multiplication is done over GF(3). Thus 120 is included in this sequence. 2*259 = 201012_3 encodes polynomial 2*x^5 + x^3 + x + 2, while sigma(259) = 304 = 102021_3 encodes polynomial x^5 + 2*x^3 + 2*x + 1 = 2(2*x^5 + x^3 + x + 2), thus 259 is included. 2*18990 = 1221002200_3 encodes polynomial x^9 + 2*x^8 + 2*x^7 + x^6 + 2*x^3 + 2*x^2, while sigma(18990) = 49608 = 2112001100_3 encodes polynomial 2*x^9 + x^8 + x^7 + 2*x^6 + x^3 + x^2 = 2(x^9 + 2*x^8 + 2*x^7 + x^6 + 2*x^3), thus 18990 is included. 2*667296 = 2111210201100_3 encodes polynomial 2*x^12 + x^11 + x^10 + x^9 + 2*x^8 + x^7 + 2*x^5 + x^3 + x^2, while sigma(667296) = 2175264 = 11002111220100_3 encodes polynomial x^13 + x^12 + 2*x^9 + x^8 + x^7 + x^6 + 2*x^5 + 2*x^4 + x^2 = (2*x + 1)(2*x^12 + x^11 + x^10 + x^9 + 2*x^8 + x^7 + 2*x^5 + x^3 + x^2) [when polynomial multiplication is done over GF(3)], thus 667296 is included.
Links
Programs
-
PARI
isA325808(n) = { my(p=Pol(digits(n+n,3))*Mod(1, 3), q=Pol(digits(sigma(n),3))*Mod(1, 3)); !(q%p); };
Comments