A325809 Let k = A228058(n). a(n) is the number of ways to partition the divisors of k into complementary subsets x and y so that the (k-Sum(x)) and (k-Sum(y)) are coprime.
8, 12, 8, 16, 8, 15, 16, 8, 113, 16, 8, 15, 16, 7, 14, 8, 8, 13, 16, 15, 8, 15, 14, 8, 15, 254, 8, 16, 8, 128, 16, 16, 16, 15, 8, 15, 16, 15, 8, 16, 13, 15, 7, 13, 16, 8, 16, 43008, 8, 8, 126, 8, 15, 15, 15, 8, 16, 8, 14, 8, 15, 16, 8, 16, 60672, 15, 256, 13, 16, 7, 103, 16, 16, 8, 16, 16, 16, 8, 2015, 16, 8, 15, 16, 39093, 16
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1158
Programs
-
PARI
up_to = 25000; isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y)); A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(k
A228058(n), k++; v[k] = n)); (v); }; v228058 = A228058list(up_to); A228058(n) = v228058[n]; A325807(n) = { my(divs=divisors(n), s=sigma(n),r); sum(b=0,(2^(-1+length(divs)))-1,r=sumbybits(divs,2*b);(1==gcd(n-(s-r),n-r))); }; sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); }; A325809(n) = A325807(A228058(n));
Comments