cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325813 a(n) = gcd(A034448(n)-n, n-A048146(n)), where A034448 and A048146 are respectively the sum of unitary and non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 12, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 7, 3, 6, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 12, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 21, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034460(n), A325814(n)).

A325814 a(n) = n - A048146(n), where A048146 is the sum of non-unitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 6, 10, 11, 4, 13, 14, 15, 2, 17, 9, 19, 8, 21, 22, 23, 0, 20, 26, 15, 12, 29, 30, 31, 2, 33, 34, 35, -5, 37, 38, 39, 4, 41, 42, 43, 20, 27, 46, 47, -8, 42, 35, 51, 24, 53, 18, 55, 8, 57, 58, 59, 12, 61, 62, 39, 2, 65, 66, 67, 32, 69, 70, 71, -33, 73, 74, 55, 36, 77, 78, 79, -4, 42, 82, 83, 20
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Cf. also A325314.

Programs

Formula

a(n) = n - A048146(n).
a(n) = A033879(n) + A034460(n).
a(A228058(n)) = A325824(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - zeta(2) * (1 - 1/zeta(3)) / 2 = 0.3617493553... . - Amiram Eldar, Feb 22 2024

A325822 Terms k of A228058 for which A325814(k) is a multiple of A034460(k).

Original entry on oeis.org

477, 3725, 29161, 107797, 166753, 205409, 500837, 535277, 780625, 1610389, 5649841, 6968125, 10292809, 10633429, 24231241, 32771201, 38322857, 40028661, 104861501, 170384117, 183593125, 277405641, 326081953, 488265625, 491716541, 704531953, 797338489, 836737393, 2053219321, 2359421369, 3012238153
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Such terms A228058(n) that A325823(n) is a divisor of A325824(n).
If any odd perfect number exists, then it must occur in this sequence.
This is not a subsequence of A325376: 107797 is the first term that does not occur there.

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A034460(n) = (A034448(n) - n);
    A048146(n) = (sigma(n)-A034448(n));
    A325814(n) = (n-A048146(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    for(n=1,oo, if(isA228058(n) && !(A325814(n)%A034460(n)), print1(n, ", ")));
Showing 1-3 of 3 results.