cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325819 a(n) = A324213(A228058(n)).

Original entry on oeis.org

26, 84, 78, 168, 118, 146, 242, 182, 208, 276, 200, 398, 396, 322, 438, 344, 390, 412, 536, 628, 432, 338, 582, 472, 558, 840, 512, 824, 640, 726, 1022, 852, 914, 628, 744, 616, 1178, 1018, 858, 1140, 856, 760, 990, 936, 1490, 1014, 1564, 1482, 1104, 1096, 1196, 1138, 1008, 1550, 1556, 1180, 1474, 1158, 1508, 858, 2020
Offset: 1

Views

Author

Antti Karttunen, May 29 2019

Keywords

Comments

If a(n) > 2 for all n, then there are no odd perfect numbers. See also the conjectures in A324213.

Crossrefs

Programs

  • PARI
    up_to = 25000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, May 29 2019
    A324213(n) = { my(s=sigma(n)); sum(i=0, s, (1==gcd(n-i, n-(s-i)))); };
    A325819(n) = A324213(A228058(n));

Formula

a(n) = A324213(A228058(n)).