A325835 Number of integer partitions of 2*n having one more distinct submultiset than distinct subset-sums.
0, 0, 1, 2, 3, 5, 9, 10, 14, 22, 30, 33, 46, 52, 74, 107, 101, 123, 171, 182, 225
Offset: 0
Examples
The a(2) = 1 through a(8) = 14 partitions: (211) (321) (422) (532) (633) (743) (844) (3111) (431) (541) (642) (752) (853) (41111) (5221) (651) (761) (862) (5311) (4332) (7322) (871) (511111) (5331) (7331) (5443) (6222) (7421) (7441) (6411) (7511) (7531) (33222) (72221) (8332) (6111111) (74111) (8521) (71111111) (8611) (82222) (83311) (85111) (811111111) For example, the partition (7,5,3,1) has submultisets (), (1), (3), (5), (7), (3,1), (5,1), (5,3), (7,1), (7,3), (7,5), (5,3,1), (7,3,1), (7,5,1), (7,5,3), (7,5,3,1), all of which have different sums except for (5,3) and (7,1), which both sum to 8, so (7,5,3,1) is counted under a(8).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==1+Length[Union[Total/@Subsets[#]]]&]],{n,0,20,2}]
Comments