cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325836 Number of integer partitions of n having n - 1 different submultisets.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 0, 3, 0, 5, 2, 2, 0, 15, 0, 2, 3, 25, 0, 17, 0, 18, 3, 2, 0, 150, 0, 2, 13, 24, 0, 43, 0, 351, 3, 2, 2, 383, 0, 2, 3, 341, 0, 60, 0, 37, 51, 2, 0, 3733, 0, 31, 3, 42, 0, 460, 1, 633, 3, 2, 0, 1780, 0, 2, 68, 12460, 0, 87, 0, 55, 3
Offset: 0

Views

Author

Gus Wiseman, May 29 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325694.

Examples

			The a(3) = 1 through a(13) = 15 partitions (empty columns not shown):
  (3)  (22)  (32)  (322)  (432)   (3322)  (32222)  (4432)
             (41)  (331)  (531)   (4411)  (71111)  (5332)
                   (511)  (621)                    (5422)
                          (3222)                   (5521)
                          (6111)                   (6322)
                                                   (6331)
                                                   (6511)
                                                   (7411)
                                                   (8221)
                                                   (8311)
                                                   (9211)
                                                   (33322)
                                                   (55111)
                                                   (322222)
                                                   (811111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> b(n$2,n-1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==n-1&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
         If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1);
         Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := b[n, n, n-1];
    a /@ Range[0, 80] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)

A325802 Numbers with one more divisor than distinct subset-sums of their prime indices.

Original entry on oeis.org

12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 525, 550, 561, 595, 646, 675, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1666, 1672, 1771, 1794, 1798, 1870, 1900
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A subset-sum of an integer partition is any sum of a submultiset of it.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325835.

Examples

			The sequence of terms together with their prime indices begins:
   12: {1,1,2}
   30: {1,2,3}
   40: {1,1,1,3}
   63: {2,2,4}
   70: {1,3,4}
  112: {1,1,1,1,4}
  154: {1,4,5}
  165: {2,3,5}
  198: {1,2,2,5}
  220: {1,1,3,5}
  273: {2,4,6}
  286: {1,5,6}
  325: {3,3,6}
  351: {2,2,2,6}
  352: {1,1,1,1,1,5}
  364: {1,1,4,6}
  442: {1,6,7}
  525: {2,3,3,4}
  550: {1,3,3,5}
  561: {2,5,7}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,t,S,i;
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
      S:= {0}:
      for t in F do
       S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
      od;
      nops(S) = mul(t[2]+1,t=F)-1
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Oct 30 2024
  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==1+Length[Union[hwt/@Divisors[#]]]&]

Formula

A000005(a(n)) = 1 + A299701(a(n)).

A307699 Numbers k such that there is no integer partition of k with exactly k-1 submultisets.

Original entry on oeis.org

0, 1, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 66, 68, 72, 74, 80, 84, 86, 90, 92, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 134, 138, 140, 146, 150, 152, 158, 164, 168, 170, 174, 180, 182, 186, 192, 194, 198, 200, 206
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

After a(1) = 0, first differs from A229488 in lacking 56.
The number of submultisets of a partition is the product of its multiplicities, each plus one.
{a(n)-1} contains all odd numbers m = p*q*... such that gcd(p-1, q-1, ...) > 2. In particular, {a(n)-1} contains all powers of all primes > 3. Proof: If g is the greatest common divisor, then all factors of k are congruent to 1 modulo g, and thus all multiplicities of any valid multiset are divisible by g. However, the required sum is congruent to 2 modulo g, and so no such multiset can exist. - Charlie Neder, Jun 06 2019

Examples

			The sequence of positive terms together with their prime indices begins:
   1: {}
   2: {1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  14: {1,4}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  26: {1,6}
  30: {1,2,3}
  32: {1,1,1,1,1}
  38: {1,8}
  42: {1,2,4}
  44: {1,1,5}
  48: {1,1,1,1,2}
  50: {1,3,3}
  54: {1,2,2,2}
  60: {1,1,2,3}
Partitions realizing the desired number of submultisets for each non-term are:
   3: (3)
   4: (22)
   5: (41)
   7: (511)
   9: (621)
  10: (4411)
  11: (71111)
  13: (9211)
  15: (9111111)
  16: (661111)
  17: (9521)
  19: (94411)
  21: (981111)
  22: (88111111)
  23: (32222222222)
  25: (99421)
  27: (3222222222222)
  28: (994411)
  29: (98222222)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50],Function[n,Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])==n-1&]=={}]]

Extensions

More terms from Alois P. Heinz, May 30 2019
Showing 1-3 of 3 results.