cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325837 The number of coreful divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

First differs from A050361 at n = 64.
From Amiram Eldar, Sep 08 2023: (Start)
The number of exponentially odd divisors of n is A322483(n), and their sum is A033634(n).
A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n. (End)
Also, the number of divisors of n that are cubefull exponentially odd numbers (A335988). - Amiram Eldar, Feb 11 2024

Crossrefs

Cf. A003557, A005361 (number of coreful divisors), A046951, A268335.

Programs

  • Mathematica
    fun[p_,e_] := Floor[(e+1)/2]; a[n_] := Times@@(fun@@@FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+1)\2, factor(n)[, 2])); \\ Amiram Eldar, Sep 01 2023

Formula

Multiplicative with a(p^e) = floor((e+1)/2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.231291... (A065487). - Amiram Eldar, Sep 10 2022
a(n) = A046951(A350390(n)) (the number of squares dividing the largest exponentially odd divisor of n). - Amiram Eldar, Sep 01 2023
From Amiram Eldar, Sep 08 2023: (Start)
a(n) = A046951(A003557(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)). (End)

Extensions

Name corrected by Amiram Eldar, Sep 08 2023