cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A325839 Exponentially-odd coreful highly composite numbers: numbers with record values of the number of exponentially odd coreful divisors (A325837).

Original entry on oeis.org

1, 8, 32, 128, 512, 864, 3456, 7776, 13824, 31104, 124416, 279936, 497664, 1119744, 1990656, 3888000, 10077696, 15552000, 34992000, 62208000, 139968000, 248832000, 388800000, 559872000, 1259712000, 1555200000, 2239488000, 3499200000, 6220800000, 8957952000
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

The corresponding record numbers of exponentially-odd divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 63, 64, ... (see the link for more terms).
The even version of this sequence is A046952 which is the sequence of numbers with record number of square divisors (only even exponents, A046951).
Numbers with record values of the number of exponentially odd divisors are the same as the numbers with record values of the number of semi-unitary divisors (A322484). - Amiram Eldar, Sep 08 2023

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := Floor[(e+1)/2]; a[n_] := Times@@(fun@@@FactorInteger[n]); am = 0; s={}; Do[a1=a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 1, 300000}]; s

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A350390 a(n) is the largest exponentially odd divisor of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 8, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 24, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 32, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A331737 at n = 16.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] - !(f[i,2]%2)));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A350390(n): return n*core(n)//prod(primefactors(n)) # Chai Wah Wu, Dec 30 2021
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and p^(e-1) otherwise.
a(n) = n/A336643(n).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} 1-(p-1)/(p^2*(p+1)) = 0.8073308216... (A306071).
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023

A366902 The number of exponentially evil divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A050361 at n = 128.
The number of divisors of n that are exponentially evil numbers (A262675), i.e., numbers having only evil (A001969) exponents in their canonical prime factorization.
The sum of these divisors is A366904(n) and the largest of them is A366906(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || OddQ[DigitCount[e + 1, 2, 1]], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = n\2 + (n%2 || hammingweight(n+1)%2); \\ after Charles R Greathouse IV at A159481
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A159481(e).
a(n) >= 1, with equality if and only if n is a cubefree number (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} Sum_{k>=1} 1/p^A262675(k) = 1.241359937856... .

A365680 The number of exponentially squarefree divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 5, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Comments

First differs from A252505 at n = 32.
The number of divisors of n that are exponentially squarefree numbers (A209061), i.e., numbers having only squarefree exponents in their canonical prime factorization.
The sum of these divisors is A365682(n) and the largest of them is A365683(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Count[Range[e], ?SquareFreeQ] + 1; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sum(k=1, n, issquarefree(k)) + 1;
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A013928(e+1) + 1.
a(n) <= A000005(n), with equality if and only if n is a biquadratefree number (A046100).

A366901 The number of exponentially odious divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, from A365551 at n = 64, and from A353898 at n = 128.
The number of divisors of n that are exponentially odious numbers (A270428), i.e., numbers having only odious (A000069) exponents in their canonical prime factorization.
The sum of these divisors is A366903(n) and the largest of them is A366905(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || EvenQ[DigitCount[e + 1, 2, 1]], 1, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = 1 + n\2 + (n%2 || hammingweight(n+1)%2==0); \\ after Charles R Greathouse IV at A115384
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A115384(e) + 1.
a(n) <= A000005(n), with equality if and only if n is a cubefree number (A004709).

A365173 The number of divisors d of n such that gcd(d, n/d) is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2023

Keywords

Comments

First differs from A252505 at n = 64.
The sum of these divisors is A365174(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 5)/4] + Floor[(e + 6)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+5)\4 + (x+6)\4, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X^2 - X^4)/((1 - X)^2*(1 + X^2)))[n], ", ")) \\ Vaclav Kotesovec, Jan 20 2024

Formula

Multiplicative with a(p^e) = floor((e+5)/4) + floor((e+6)/4) = A004524(e+5).
a(n) <= A000005(n), with equality if and only if n is not a biquadrateful number (A046101).
a(n) >= A034444(n), with equality if and only if n is squarefree (A005117).
a(n) == 1 (mod 2) if and only if n is a square of an exponentially odd number (i.e., a number whose prime factorization include only exponents e such that e == 2 (mod 4)).
From Vaclav Kotesovec, Jan 20 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - 1/(p^(2*s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/(p^2*(1 + p^2))) = 0.937494282731300250789438325050116436995101826036120273493270589183132928...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 2) * log(p) / (p^6 + 2*p^4 - 1) = f(1) * 0.192452062257404507109731932640803706644036700262364333369815000973104583...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368168 The number of unitary divisors of n that are cubefull exponentially odd numbers (A335988).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A359411 and A367516 at n = 64.
Also, the number of unitary divisors of the largest unitary divisor of n that is a cubefull exponentially odd number (A368167).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 || !(f[i, 2]%2), 1, 2));}

Formula

a(n) = A034444(A368167(n)).
Multiplicative with a(p^e) = 2 if e is odd that is larger than 1, and 1 otherwise.
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= n, with equality if and only if n is in A335988.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 1.12560687309375943599... .

A365333 The number of exponentially odd coreful divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A043289, A053164, A063775, A203640 and A295658 at n = 64.
The number of squares dividing the largest exponentially odd divisor of n is A325837(n).
The sum of the exponentially odd divisors of the largest square dividing n is A365334(n). [corrected, Sep 08 2023]
The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n). - Amiram Eldar, Sep 08 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, x\2), factor(n)[, 2]));

Formula

a(n) = A325837(A008833(n)).
a(n) = 1 if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = max(1, floor(e/2)).
Dirichlet g.f.: zeta(s) * zeta(4*s) * zeta(6*s) / zeta(12*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15015/(1382*Pi^2) = 1.100823... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A160338 at n = 64, and from A178489 at n = 65.
The number of divisors of the square root of the largest square dividing n is A046951(n).
The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023]

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2]));

Formula

a(n) = A325837(A000188(n)).
a(n) > 1 if and only if n is a bicubeful number (A355265).
Multiplicative with a(p^e) = floor((e+2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A365550 The number of square coreful divisors of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A188585 at n = 64.
A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n.

Examples

			a(16) = 2 since the coreful divisors of 16 are {2, 4, 8, 16}, and 2 of them, 4 and 16, are squares.
		

Crossrefs

Cf. A001694, A005361 (number of coreful divisors), A046951 (number of square divisors), A325837.

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> x\2, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = floor(e/2).
a(n) > 0 if and only if n is a powerful number (A001694).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)).
Showing 1-10 of 11 results. Next